login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A168295 Worpitzky form polynomials for the {1,8,1} A142458 sequence: p(x,n) = Sum[A(n, k)*Binomial[x + k - 1, n - 1], {k, 1, n}] 0
1, 1, 2, 2, 10, 10, 6, 52, 120, 80, 24, 280, 1160, 1760, 880, 120, 1520, 10000, 27200, 30800, 12320, 720, 11280, 78160, 343200, 695200, 628320, 209440, 5040, 164640, 784000, 3684800, 12073600, 19490240, 14660800, 4188800, 40320, 1438080 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Row sums are:

{1, 3, 22, 258, 4104, 81960, 1966320, 55051920, 1761621120, 63417997440,...}.

Dividing row A167786 by 3^n gets a very similar sequence.

In Comtet there is this function:

x^n=Sum[Eulerian[n,k*Binomial[x+k-1,n],{k,1,n]]

In OEIS I was looking for an Umbral Calculus expansion for the MacMahon and

found this "Worpitzky form":

Sum [MacMahon[n,k]*Binomial[x+k-1,n-1],{k,1,n}]=(2*x+1)^(n+1)

The use the infinite sums k, 2*k+1 type polynomials

and are pretty much alike except for a sliding offset in n.

Conjecture: "Worpitzky forms"

Some general polynomial form:general Pascal recursion Pascal[n,k,m]

p[x,n,m]=Sum [Pascal[n,k,m]*Binomial[x+k-1,n-1],{k,1,n}]

where p[x,n,m] are the inverse z transform polynomials.

LINKS

Table of n, a(n) for n=1..38.

FORMULA

p(x,n) = Sum[A(n, k)*Binomial[x + k - 1, n - 1], {k, 1, n}]

EXAMPLE

{1},

{1, 2},

{2, 10, 10},

{6, 52, 120, 80},

{24, 280, 1160, 1760, 880},

{120, 1520, 10000, 27200, 30800, 12320},

{720, 11280, 78160, 343200, 695200, 628320, 209440},

{5040, 164640, 784000, 3684800, 12073600, 19490240, 14660800, 4188800},

{40320, 1438080, 15532160, 48294400, 170755200, 445688320, 598160640, 385369600, 96342400},

{362880, -51206400, 178617600, 1217036800, 2840745600, 8032738560, 17417030400, 20005708800, 11272060800, 2504902400}

MATHEMATICA

(*Worpitzky form polynomials for A142458*)

Clear[A, m, n, k, a, p]

m = 3;

A[n_, 1] := 1 A[n_, n_] := 1

A[n_, k_] := (m*n - m*k + 1)A[n - 1, k - 1] + (m*k - (m - 1))A[n - 1, k];

a = Table[A[n, k], {n, 10}, {k, n}];

p[x_, n_] = Sum[a[[n, k]]*Binomial[x + k - 1, n - 1], {k, 1, n}];

Table[CoefficientList[Expand[(n - 1)!*p[x, n]], x], {n, 1, 10}];

Flatten[%]

CROSSREFS

A167786, A142458

Sequence in context: A135996 A141610 A019241 * A249152 A216708 A032005

Adjacent sequences:  A168292 A168293 A168294 * A168296 A168297 A168298

KEYWORD

nonn,uned

AUTHOR

Roger L. Bagula, Nov 22 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 17 22:17 EDT 2019. Contains 324200 sequences. (Running on oeis4.)