login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A168273 a(n) = 2*n + (-1)^n - 1. 6
0, 4, 4, 8, 8, 12, 12, 16, 16, 20, 20, 24, 24, 28, 28, 32, 32, 36, 36, 40, 40, 44, 44, 48, 48, 52, 52, 56, 56, 60, 60, 64, 64, 68, 68, 72, 72, 76, 76, 80, 80, 84, 84, 88, 88, 92, 92, 96, 96, 100, 100, 104, 104, 108, 108, 112, 112, 116, 116, 120, 120, 124, 124, 128, 128, 132 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (1,1,-1).

FORMULA

From  R. J. Mathar, Jan 05 2011: (Start)

G.f.: 4*x^2/( (1+x)*(1-x)^2).

a(n) = 2*A052928(n).

a(n) = A008586(floor(n/2)). (End)

a(n) = 2*n - 2*(n mod 2). - Wesley Ivan Hurt, Jun 30 2013

E.g.f.: (1 + (2*x - 1)*exp(2*x))*exp(-x). - G. C. Greubel, Jul 16 2016

MATHEMATICA

CoefficientList[Series[4 x / ((1+x) (1-x)^2), {x, 0, 70}], x] (* Vincenzo Librandi, May 14 2013 *)

LinearRecurrence[{1, 1, -1}, {0, 4, 4}, 50] (* G. C. Greubel, Jul 16 2016 *)

PROG

(MAGMA) [2*n-1 + (-1)^n: n in [1..70]] // Vincenzo Librandi, May 14 2013

(PARI) a(n)=2*n-1+(-1)^n \\ Charles R Greathouse IV, Oct 07 2015

CROSSREFS

Cf. A052928, A008586.

Sequence in context: A053249 A071339 A146890 * A278933 A145447 A204989

Adjacent sequences:  A168270 A168271 A168272 * A168274 A168275 A168276

KEYWORD

nonn,easy

AUTHOR

Vincenzo Librandi, Nov 22 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 26 20:42 EDT 2017. Contains 287129 sequences.