login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A168219 Naturals n for which 1 + 10*n^3 (A168147) is prime. 8
1, 3, 4, 6, 15, 16, 18, 24, 27, 30, 31, 36, 37, 43, 51, 52, 57, 60, 73, 75, 81, 82, 87, 90, 93, 106, 108, 109, 114, 145, 154, 159, 160, 163, 165, 171, 174, 175, 178, 196, 201, 204, 207, 208, 211, 220, 222, 225, 228, 234 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

It is conjectured that sequence is infinite.

No three consecutive integers n are in the list. [Proof: An integer of the form n=3*k+2 generates 1+10*n^3 = 9*(9+30*k^3+60*k^2+40*k) which is divisible through 9, hence not a prime, so these n are not in the list. Since every third integer is of this form == 2 (mod 3), no more than two consecutive integers can be in the sequence.] [Zak Seidov, Nov 24 2009]

REFERENCES

Harold Davenport, Multiplicative Number Theory, Springer-Verlag New-York 1980

Leonard E. Dickson: History of the Theory of numbers, vol. I, Dover Publications 2005

Paulo Ribenboim, The New Book of Prime Number Records, Springer 1996

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1139

EXAMPLE

(1) 1+10*1^3=11 gives a(1)=1

(2) 1+10*3^3=271=3^4 gives a(2)=3

(3) 1+10*37^3=506531 gives a(13)=37

MATHEMATICA

Select[Range[100], PrimeQ[1 + 10*#^3] &] (* G. C. Greubel, Jul 16 2016 *)

PROG

(PARI) for(n=1, 2e2, isprime(n^3*10+1) && print1(n", "))  \\ - M. F. Hasler, Jul 24 2011

CROSSREFS

Cf. A000040, A168147, A167535.

Sequence in context: A137820 A049892 A063477 * A129827 A122727 A089249

Adjacent sequences:  A168216 A168217 A168218 * A168220 A168221 A168222

KEYWORD

nonn

AUTHOR

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Nov 20 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 25 15:14 EDT 2017. Contains 284082 sequences.