%I #32 Jun 03 2023 10:46:15
%S 0,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,0,1,1,1,
%T 1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,
%U 1,1,0,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,0,1,1,1,1
%N Characteristic function of numbers that are not multiples of 10.
%H Reinhard Zumkeller, <a href="/A168184/b168184.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Ch#char_fns">Index entries for characteristic functions</a>
%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,0,0,1).
%F a(n+10) = a(n);
%F a(n) = A000007(A010879(n));
%F a(A067251(n)) = 1; a(A008592(n)) = 0;
%F not the same as A168046: a(n)=A168046 for n<=100;
%F A033442(n) = Sum_{k=0..n} a(k)*(n-k).
%F Dirichlet g.f.: (1-1/10^s)*zeta(s). - _R. J. Mathar_, Feb 19 2011
%F For the general case: the characteristic function of numbers that are not multiples of m is a(n)=floor((n-1)/m)-floor(n/m)+1, m,n > 0. - _Boris Putievskiy_, May 08 2013
%t Table[If[Mod[n,10]==0,0,1],{n,0,110}] (* or *) PadRight[{},110,{0,1,1,1,1,1,1,1,1,1}] (* _Harvey P. Dale_, Jun 03 2023 *)
%o (Haskell)
%o a168184 = (1 -) . (0 ^) . (`mod` 10)
%o a168184_list = cycle [0,1,1,1,1,1,1,1,1,1]
%o -- _Reinhard Zumkeller_, Oct 10 2012
%o (PARI) a(n)=n%10>0 \\ _Charles R Greathouse IV_, Sep 24 2015
%Y Cf. A168185, A145568, A168182, A168181, A109720, A097325, A011558, A166486, A011655, A000035, A010690, A033442.
%K nonn,easy
%O 0,1
%A _Reinhard Zumkeller_, Nov 30 2009