login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A168171 Least prime p = 1 (mod n) which divides Fibonacci((p-1)/n). 3
11, 29, 139, 61, 211, 541, 2269, 89, 199, 281, 859, 661, 911, 2269, 2221, 2081, 2789, 2161, 3041, 421, 2521, 19009, 21529, 3001, 9901, 5981, 2161, 2269, 26449, 2221, 31249, 19681, 17491, 2789, 3571, 25309, 30859, 3041, 6709, 3001, 9349, 2521, 13159, 19009 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..1000

EXAMPLE

For n=1, all numbers p satisfy p=1 (mod n), but p=11 is the least prime that divides F((p-1)/1)=F(p-1)=F(10)=55.

For n=2, all odd numbers, thus all primes p>2, satisfy p=1 (mod n), but p=29 is the first one to divide F((p-1)/2) = F(14) = 377 = 13*29.

For n=5, a(n)=211 is the smallest Artiad, i.e. prime p=1 (mod 5) which divides F((p-1)/5) = F(42) = 211*1269736.

PROG

(PARI) for(n=1, 99, forprime(p=1, default(primelimit), (p-1)%n & next; fibonacci((p-1)/n)%p | print1(p", ") | next(2)); error(n))

CROSSREFS

Cf. A122487 (p | F[(p+1)/2]), A047652 (p | F[(p-1)/3]), A001583 (Artiads: p | F[(p-1)/5], A125252 (p | F[(p+1)/7]), A125253 (p | F[(p-1)/7]).

Sequence in context: A099911 A118638 A088460 * A249993 A080083 A115972

Adjacent sequences:  A168168 A168169 A168170 * A168172 A168173 A168174

KEYWORD

nonn

AUTHOR

M. F. Hasler, Nov 25 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 22 05:36 EST 2017. Contains 295076 sequences.