

A168156


Sum of the binary digits of all primes between 2^(n1) and 2^n1, i.e., with exactly n binary digits.


2



0, 3, 5, 6, 18, 29, 56, 113, 240, 452, 885, 1790, 3474, 6951, 13671, 27183, 54201, 107224, 213882, 424513, 845716, 1682456, 3350362, 6671581, 13299828, 26500297, 52829961, 105342821, 210088965, 419106389, 836097752, 1668341390
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Sequence A168155 yields the partial sums.


LINKS

Table of n, a(n) for n=1..32.


EXAMPLE

No prime can be written with only 1 binary digit, thus a(1)=0.
The primes that can be written with 2 binary digits are 2 = 10[2] and 3 = 11[2], they have 3 nonzero bits, so a(2)=3.
Primes with 3 binary digits are 5 = 101[2] and 7 = 111[3]. They have a total of a(3)=5 nonzero bits.


PROG

(PARI) s=0; L=p=2; while( L*=2, print1(s", "); s=0; until( L<p=nextprime(p+1), s+=norml2(binary(p))))


CROSSREFS

Cf. A086904.
Sequence in context: A192119 A050563 A282809 * A295403 A272440 A276704
Adjacent sequences: A168153 A168154 A168155 * A168157 A168158 A168159


KEYWORD

nonn


AUTHOR

M. F. Hasler, Nov 20 2009


EXTENSIONS

a(26)a(32) from Donovan Johnson, Jul 28 2010


STATUS

approved



