The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A168091 Slowest increasing sequence of alternatively cubes and squares with common neighbor digits. 1
 1, 16, 64, 441, 1331, 1369, 9261, 10201, 10648, 80089, 91125, 501264, 4019679, 9006001, 10077696, 60000516, 60236288, 80013025, 500566184, 4000056516, 6008715432, 20000182084, 40036787461, 100000147984, 400152624409 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS No term ending in zero is allowed. LINKS EXAMPLE 1 (cube), 16(square): common neighbor digits = 1, 16(square), 64(cube): common neighbor digits = 6, 64(cube), 441(square): common neighbor digits = 4, etc. MAPLE A168091 := proc(n) if n = 1 then 1; elif n mod 2 = 0 then pdig := op(1, convert( procname(n-1), base, 10)) ; for b from 1+floor(sqrt(procname(n-1))) do a := b^2 ; adg := convert(a, base, 10) ; if op(-1, adg) = pdig and op(1, adg) <> 0 then return a ; end if; end do ; else pdig := op(1, convert( procname(n-1), base, 10)) ; for b from 1+floor(root[3](procname(n-1))) do a := b^3 ; adg := convert(a, base, 10) ; if op(-1, adg) = pdig and op(1, adg) <> 0 then return a ; end if; end do ; end if; end proc: for n from 1 do printf("%d, \n", A168091(n)) ; end ; # R. J. Mathar, Jan 25 2010 CROSSREFS Cf. A167994. Sequence in context: A073718 A230970 A061449 * A181208 A175209 A141840 Adjacent sequences:  A168088 A168089 A168090 * A168092 A168093 A168094 KEYWORD base,nonn AUTHOR Zak Seidov, Nov 18 2009 EXTENSIONS Corrected from a(10) on by R. J. Mathar, Jan 25 2010 More terms from Jon E. Schoenfield, Jul 17 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 28 06:55 EST 2020. Contains 332321 sequences. (Running on oeis4.)