This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A168071 Expansion of (1-3*x^2-4*x^3)/((1-x)^2*(1+x+x^2)). 2
 1, 1, -2, -5, -5, -8, -11, -11, -14, -17, -17, -20, -23, -23, -26, -29, -29, -32, -35, -35, -38, -41, -41, -44, -47, -47, -50, -53, -53, -56, -59, -59, -62, -65, -65, -68, -71, -71, -74, -77, -77, -80, -83, -83, -86, -89, -89, -92, -95, -95, -98, -101, -101, -104, -107, -107, -110, -113, -113 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1). FORMULA G.f.: (1-3*x^2-4*x^3)/((1-x)^2*(1+x+x^2)). a(n) = A168072(n)/3^n. From Wesley Ivan Hurt, Oct 05 2017: (Start) a(n) = a(n-1) + a(n-3) - a(n-4) for n > 3. a(n) = (45 - 48*n + 18*cos(2*(n-1)*Pi/3) - 9*cos(Pi*cos(2*(n-1)*Pi/3) + Pi*sin(2*(n-1)*Pi/3)/sqrt(3)) + 14*sqrt(3)*sin(2*(n-1)*Pi/3))/24. (End) MATHEMATICA LinearRecurrence[{1, 0, 1, -1}, {1, 1, -2, -5}, 50] (* G. C. Greubel, Jul 08 2016 *) PROG (PARI) Vec((1-3*x^2-4*x^3)/((1-x)^2*(1+x+x^2)) + O(x^70)) \\ Michel Marcus, Dec 03 2014 CROSSREFS Cf. A168053. Sequence in context: A251736 A076520 A014249 * A145420 A284169 A152781 Adjacent sequences:  A168068 A168069 A168070 * A168072 A168073 A168074 KEYWORD easy,sign AUTHOR Paul Barry, Nov 18 2009 EXTENSIONS Corrected by R. J. Mathar, Dec 03 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 20:04 EDT 2019. Contains 328037 sequences. (Running on oeis4.)