This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A168046 Characteristic function of zerofree numbers in decimal representation. 26
 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS a(A052382(n)) = 1; a(A011540(n)) = 0; a(n) = A000007(A055641(n)); not the same as A168184: a(n)=A168184(n) for n<=100. a(A007602(n)) = a(A038186(n)) = 1. - Reinhard Zumkeller, Apr 07 2011 LINKS R. Zumkeller, Table of n, a(n) for n = 0..10000 Eric Weisstein's World of Mathematics, Zerofree FORMULA a(n) = A057427(A010879(n)) * (if n<10 then 1 else a(A059995(n))). From Hieronymus Fischer, Jan 23 2013: (Start) a(n) = A057427(A007954(n)) = sign(dp_10(n)). where dp_10(n) digital product of n in base 10. a(n) = 1 - A217096(n). a(n) = 1 - sign(A055641(n)). g(x) = x(1-x^9)/((1-x)(1-x^10))(1 + sum_{j>=1} (x^((10^j-10)/9) - x^10^j)/(1-x^10^(j+1)))). g(x) = 1/(1-x) - g_A217096(x), where g_A217096(x) is the g.f. of A217096. (End) PROG (Haskell) a168046 = fromEnum . ch0 where    ch0 x = x > 0 && (x < 10 || d > 0 && ch0 x') where (x', d) = divMod x 10 -- Reinhard Zumkeller, May 10 2015, Apr 07 2011 CROSSREFS Cf. A052382, A217096, A011540. Sequence in context: A168182 A204447 A188642 * A168184 A013595 A011582 Adjacent sequences:  A168043 A168044 A168045 * A168047 A168048 A168049 KEYWORD base,nonn AUTHOR Reinhard Zumkeller, Dec 01 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 09:28 EDT 2019. Contains 328345 sequences. (Running on oeis4.)