login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A168036 Difference between n' and n, where n' is the arithmetic derivative of n (A003415). 7
0, -1, -1, -2, 0, -4, -1, -6, 4, -3, -3, -10, 4, -12, -5, -7, 16, -16, 3, -18, 4, -11, -9, -22, 20, -15, -11, 0, 4, -28, 1, -30, 48, -19, -15, -23, 24, -36, -17, -23, 28, -40, -1, -42, 4, -6, -21, -46, 64, -35, -5, -31, 4, -52, 27, -39, 36, -35, -27, -58, 32, -60, -29 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Let k=n'-n. For k=-1 n is a primary pseudoperfect number (A054377), apart from n=1; For k=0 n is p^p, being p a prime number (A051674); For k=1 n is a Giuga number (A007850).

a(A083347(n)) < 0; a(A051674(n)) = 0; a(A083348(n)) > 0. - Reinhard Zumkeller, May 22 2015

LINKS

T. D. Noe, Table of n, a(n) for n = 0..10000

MAPLE

with(numtheory);

A168036:=proc(q)

local n, p;

for n from 0 to q do

  print(n*add(op(2, p)/op(1, p), p=ifactors(n)[2])-n); od; end:

A168036(1000); # Paolo P. Lava, Nov 05 2012

MATHEMATICA

np[k_] := Module[{f, n, m, p}, If[k < 2, np[k] = 0; Return[0], If[PrimeQ[k], np[k] = 1; Return[1], f = FactorInteger[k, 2]; m = f[[1, 1]]; n = k/m; p = m np[n] + n np[m]; np[k] = p; Return[p]]]];

Table[np[n] - n, {n, 0, 100}] (* Robert Price, Mar 14 2020 *)

PROG

(Haskell)

a168036 n = a003415 n - n  -- Reinhard Zumkeller, May 22 2015

CROSSREFS

Cf. A007850, A051674, A054377.

Cf. A003415, A051674, A083347, A083348.

Sequence in context: A289144 A008797 A239004 * A217930 A305371 A177256

Adjacent sequences:  A168033 A168034 A168035 * A168037 A168038 A168039

KEYWORD

easy,sign

AUTHOR

Paolo P. Lava, Nov 17 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 8 13:11 EST 2021. Contains 341948 sequences. (Running on oeis4.)