%I
%S 4903,4567,4243,3931,3631,3343,3067,2803,2551,2311,2083,1867,1663,
%T 1471,1291,1123,967,823,691,571,463,367,283,211,151,103,67,43,31,31,
%U 43,67,103,151,211,283,367,463,571,691,823,967,1123,1291,1471,1663,1867,2083,2311,2551,2803,3067,3343,3631,3931,4243,4567,4903,6367,6763,7591
%N Primes of the form 6n^2  342n + 4903.
%e p(n) = 6*n^2 342*n + 4903 is prime for all n in [0, 57]: p(0)=4903 p(1)=4567 p(2)=4243 ... p(57)=4903; and then for n=61, 62, 64, 66, ...
%t Select[Table[6n^2342n+4903,{n,0,70}],PrimeQ] (* _Harvey P. Dale_, May 01 2020 *)
%o (PARI) lista(nn)=for (n=0, nn, if (isprime(p = 6*n^2  342*n + 4903), print1(p, ", "));); \\ _Michel Marcus_, Sep 04 2013
%K nonn
%O 1,1
%A Bobby Kramer & Adam Avello (panthar1(AT)gmail.com), Nov 16 2009
%E More terms (to distinguish from quadratic) from _Charles R Greathouse IV_, Jun 18 2017
