login
A168004
Numbers n with property that first digit of 8*n = last digit of n.
2
21, 32, 43, 54, 65, 76, 86, 97, 108, 119, 131, 141, 151, 161, 171, 181, 191, 201, 211, 221, 231, 241, 252, 262, 272, 282, 292, 302, 312, 322, 332, 342, 352, 362, 372, 383, 393, 403, 413, 423, 433, 443, 453, 463, 473, 483, 493, 504, 514, 524, 534, 544, 554
OFFSET
1,1
LINKS
FORMULA
For 1 <= t <= 9, n = 10*s+t is in the sequence iff for some d>=1, t*(10^d-8)/80 <= s <= t*(10^d-8)/10 + (10^d-1)/80. For each d >= 3, there are 10^d/8 such m. - Robert Israel, Jul 04 2016
a(n) - a(n-1) can be 1 : 8*624 = 4992 and 8*625 = 5000. - Altug Alkan, Jul 04 2016
EXAMPLE
8*21=168, 8*32=256, 8*43=344, 8*54=432, etc.
MAPLE
select(n -> floor(8*n/10^ilog10(8*n))=n mod 10, [$1..554]); # Robert Israel, Jul 04 2016
MATHEMATICA
Reap[Do[If[IntegerDigits[n][[ -1]]==IntegerDigits[8*n][[1]], Sow[n]], {n, 1000}]][[2, 1]]
Select[Range[800], Last[IntegerDigits[#]]==First[IntegerDigits[8#]]&] (* Harvey P. Dale, Nov 03 2013 *)
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Zak Seidov, Nov 16 2009
STATUS
approved