Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #20 Sep 07 2023 18:20:16
%S 1,30,870,25230,731670,21218430,615334470,17844699630,517496289270,
%T 15007392388830,435214379276070,12621216999006030,366015292971174870,
%U 10614443496164071230,307818861388758065670,8926746980273983904430
%N Number of reduced words of length n in Coxeter group on 30 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
%C The initial terms coincide with those of A170749, although the two sequences are eventually different.
%C Computed with MAGMA using commands similar to those used to compute A154638.
%H G. C. Greubel, <a href="/A167945/b167945.txt">Table of n, a(n) for n = 0..500</a>
%H <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,-406).
%F G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 406*t^16 - 28*t^15 - 28*t^14 - 28*t^13 - 28*t^12 - 28*t^11 - 28*t^10 - 28*t^9 - 28*t^8 - 28*t^7 - 28*t^6 - 28*t^5 - 28*t^4 - 28*t^3 - 28*t^2 - 28*t + 1).
%F From _G. C. Greubel_, Sep 07 2023: (Start)
%F G.f.: (1+t)*(1-t^16)/(1 - 29*t + 434*t^16 - 406*t^17).
%F a(n) = 28*Sum_{j=1..15} a(n-j) - 406*a(n-16). (End)
%t CoefficientList[Series[(1+t)*(1-t^16)/(1-29*t+434*t^16-406*t^17), {t, 0, 50}], t] (* _G. C. Greubel_, Jul 02 2016; Sep 07 2023 *)
%t coxG[{16,406,-28}] (* The coxG program is at A169452 *) (* _Harvey P. Dale_, Dec 15 2017 *)
%o (Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-29*x+434*x^16-406*x^17) )); // _G. C. Greubel_, Sep 07 2023
%o (SageMath)
%o def A167945_list(prec):
%o P.<x> = PowerSeriesRing(ZZ, prec)
%o return P( (1+x)*(1-x^16)/(1-29*x+434*x^16-406*x^17) ).list()
%o A167945_list(40) # _G. C. Greubel_, Sep 07 2023
%Y Cf. A154638, A169452, A170749.
%K nonn
%O 0,2
%A _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009