This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A167931 Number of reduced words of length n in Coxeter group on 20 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I. 3
 1, 20, 380, 7220, 137180, 2606420, 49521980, 940917620, 17877434780, 339671260820, 6453753955580, 122621325156020, 2329805177964380, 44266298381323220, 841059669245141180, 15980133715657682420 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The initial terms coincide with those of A170739, although the two sequences are eventually different. Computed with MAGMA using commands similar to those used to compute A154638. LINKS G. C. Greubel, Table of n, a(n) for n = 0..500 Index entries for linear recurrences with constant coefficients, signature (18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, -171). FORMULA G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 171*t^16 - 18*t^15 - 18*t^14 - 18*t^13 - 18*t^12 - 18*t^11 - 18*t^10 - 18*t^9 - 18*t^8 - 18*t^7 - 18*t^6 - 18*t^5 - 18*t^4 - 18*t^3 - 18*t^2 - 18*t + 1). G.f.: (1+x)*(1-x^16)/(1 -19*x +189*x^16 -171*x^17). - G. C. Greubel, Apr 25 2019 MATHEMATICA CoefficientList[Series[(1+x)*(1-x^16)/(1-19*x+189*x^16-171*x^17), {x, 0, 20}], x] (* G. C. Greubel, Jul 01 2016, modified Apr 25 2019 *) coxG[{16, 171, -18, 20}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 25 2019 *) PROG (PARI) my(x='x+O('x^20)); Vec((1+x)*(1-x^16)/(1-19*x+189*x^16-171*x^17)) \\ G. C. Greubel, Apr 25 2019 (MAGMA) R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^16)/(1-19*x+189*x^16-171*x^17) ));  // G. C. Greubel, Apr 25 2019 (Sage) ((1+x)*(1-x^16)/(1-19*x+189*x^16-171*x^17)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 25 2019 CROSSREFS Cf. A154638, A170739. Sequence in context: A167073 A167148 A167680 * A168697 A168745 A168793 Adjacent sequences:  A167928 A167929 A167930 * A167932 A167933 A167934 KEYWORD nonn AUTHOR John Cannon and N. J. A. Sloane, Dec 03 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 20 00:47 EDT 2019. Contains 324223 sequences. (Running on oeis4.)