login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A167875 One third of product plus sum of three consecutive nonnegative integers; a(n)=(n+1)(n^2+2n+3)/3. 10
1, 4, 11, 24, 45, 76, 119, 176, 249, 340, 451, 584, 741, 924, 1135, 1376, 1649, 1956, 2299, 2680, 3101, 3564, 4071, 4624, 5225, 5876, 6579, 7336, 8149, 9020, 9951, 10944, 12001, 13124, 14315, 15576, 16909, 18316, 19799, 21360, 23001, 24724, 26531 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) = ((n*(n+1)*(n+2))+(n+(n+1)+(n+2)))/3, n >= 0.

Equals A006527 without initial term 0: a(n) = A006527(n+1).

Binomial transform of A167876.

Inverse binomial transform of A080930.

a(n) = A007290(n+2)+n+1.

a(n) = A014820(n)/(n+1) for n > 0.

a(n) = A116731(n+2)-1.

a(n) = A033547(n+1)-n.

a(n) = A054602(n)/3.

a(n) = A086514(n+3)-2.

a(n) = A002061(n+1)+a(n-1) for n > 0.

a(n) = A005894(n)-a(n-1) for n > 0.

First bisection is A057813.

Second differences are in A004277.

a(n) = A177342(n)*(-1)+a(n-1)*5 with n>0. For n=8, a(8)=-A177342(8)+a(7)*5=-631+176*5=249. - Bruno Berselli, May 18 2010

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).

FORMULA

a(n) = (n^3+3*n^2+5*n+3)/3.

a(n) = 3*a(n-1)-3*a(n-2)+a(n-3)+2 for n > 3; a(0)=1, a(1)=4, a(2)=11, a(3)=24.

G.f.: (1+x^2)/(1-x)^4.

a(n) = SUM(A109613(k)*A005408(n-k): 0<=k<=n). - Reinhard Zumkeller, Dec 05 2009

a(n)-4*a(n-1)+6*a(n-2)-4*a(n-3)+a(n-4)=0 for n>3. - Bruno Berselli, May 26 2010

EXAMPLE

a(0) = (0*1*2+0+1+2)/3 = (0+3)/3 = 1.

a(1) = (1*2*3+1+2+3)/3 = (6+6)/3 = 4.

a(6)-4*a(5)+6*a(4)-4*a(3)+a(2) = 119-4*76+6*45-4*24+11 = 0. - Bruno Berselli, May 26 2010

MATHEMATICA

Select[Table[(n*(n+1)*(n+2)+n+(n+1)+(n+2))/3, {n, 0, 5!}], IntegerQ[#]&] (* Vladimir Joseph Stephan Orlovsky, Dec 04 2010 *)

(Times@@#+Total[#])/3&/@Partition[Range[0, 65], 3, 1]  (* Harvey P. Dale, Mar 14 2011 *)

PROG

(MAGMA) [ (&*s + &+s)/3 where s is [n..n+2]: n in [0..42] ];

(PARI) a(n)=(n+1)*(n^2+2*n+3)/3 \\ Charles R Greathouse IV, Oct 07 2015

CROSSREFS

Cf. A001477 (nonnegative integers),

A006527 ((n^3+2*n)/3),

A167876 (1, 3, 4, 2, 0, 0, 0, 0, ...),

A080930,

A007290 (2*C(n, 3)),

A014820 ((1/3)*(n^2+2*n+3)*(n+1)^2),

A116731,

A033547 (n*(n^2+5)/3),

A054602 (Sum_{d|3} phi(d)*n^(3/d)),

A086514 ((n^3-6*n^2+14*n-6)/3),

A002061 (n^2-n+1),

A005894 (centered tetrahedral numbers),

A057813 ((2*n+1)*(4*n^2+4*n+3)/3),

A004277 (1 and the positive even numbers),

A028387 (n+(n+1)^2),

A166941, A166942, A166943.

Sequence in context: A014818 A328684 A006527 * A057304 A001752 A160860

Adjacent sequences:  A167872 A167873 A167874 * A167876 A167877 A167878

KEYWORD

nonn,easy

AUTHOR

Klaus Brockhaus, Nov 14 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 09:33 EST 2019. Contains 329843 sequences. (Running on oeis4.)