login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A167867 a(n) = 2^n*Sum_{ k=0..n } binomial(2*k,k)^3/2^k 5
1, 10, 236, 8472, 359944, 16722896, 822334816, 42068907200, 2215884717400, 119364801362800, 6545334930678816, 364137834051739200, 20502307365808906816, 1166063313963833813632, 66893439680369963627264 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The expression a(n) = B^n*Sum_{ k=0..n } binomial(2*k,k)/B^k gives A006134 for B=1, A082590 (B=2), A132310 (B=3), A002457 (B=4), A144635 (B=5), A167713 (B=16).

The expression a(n) = B^n*Sum_{ k=0..n } binomial(2*k,k)^3/B^k gives A079727 for B=1, A167867 (B=2), A167868 (B=3), A167869 (B=4), A167870 (B=16), A167871 (B=64).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

FORMULA

a(n) = 2^n*Sum[ Binomial[2*k,k]^3/2^k, {k,0,n} ].

Recurrence: n^3*a(n) = 2*(33*n^3 - 48*n^2 + 24*n - 4)*a(n-1) - 16*(2*n-1)^3*a(n-2). - Vaclav Kotesovec, Aug 13 2013

a(n) ~ 2^(6*n+5)/(31*(Pi*n)^(3/2)). - Vaclav Kotesovec, Aug 13 2013

MATHEMATICA

Table[2^n Sum[Binomial[2k, k]^3/2^k, {k, 0, n}], {n, 0, 30}] (* Vincenzo Librandi, Mar 26 2012 *)

CROSSREFS

Cf. A079727, A167867, A167868, A167869, A167870, A167872.

Cf. A000984, A066796, A006134, A082590, A132310, A002457, A144635, A167713, A167859.

Sequence in context: A012240 A295410 A188679 * A268080 A096331 A159497

Adjacent sequences:  A167864 A167865 A167866 * A167868 A167869 A167870

KEYWORD

nonn

AUTHOR

Alexander Adamchuk, Nov 14 2009

EXTENSIONS

More terms from Sean A. Irvine, Apr 27 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 16 06:18 EST 2019. Contains 330016 sequences. (Running on oeis4.)