login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A167865 Number of partitions of n into distinct parts greater than 1, with each part divisible by the next. 20

%I

%S 1,0,1,1,1,1,2,1,2,2,2,1,4,1,3,3,3,1,5,1,5,4,3,1,6,2,5,4,5,1,9,1,6,4,

%T 4,4,8,1,6,6,7,1,11,1,8,8,4,1,10,3,10,5,8,1,11,4,10,7,6,1,13,1,10,11,

%U 7,6,15,1,9,5,11,1,14,1,9,12,8,5,15,1,16,9,8,1,18,5,12,7,10,1,21,7,13,11,5

%N Number of partitions of n into distinct parts greater than 1, with each part divisible by the next.

%C Number of series-reduced planted achiral trees with n nodes, where a rooted tree is series-reduced if all terminal subtrees have at least two branches, and achiral if all branches directly under any given node are equal. - _Gus Wiseman_, Jul 13 2018

%H Alois P. Heinz, <a href="/A167865/b167865.txt">Table of n, a(n) for n = 0..10000</a>

%F a(0) = 1 and for n>=1, a(n) = Sum_{d|n, d>1} a((n-d)/d).

%F G.f. A(x) satisfies: A(x) = 1 + x^2*A(x^2) + x^3*A(x^3) + x^4*A(x^4) + ... - _Ilya Gutkovskiy_, May 09 2019

%e a(12) = 4: [12], [10,2], [9,3], [8,4].

%e a(14) = 3: [14], [12,2], [8,4,2].

%e a(18) = 5: [18], [16,2], [15,3], [12,6], [12,4,2].

%e From _Gus Wiseman_, Jul 13 2018: (Start)

%e The a(37) = 8 series-reduced planted achiral trees:

%e (oooooooooooooooooooooooooooooooooooo)

%e ((oo)(oo)(oo)(oo)(oo)(oo)(oo)(oo)(oo)(oo)(oo)(oo))

%e ((ooo)(ooo)(ooo)(ooo)(ooo)(ooo)(ooo)(ooo)(ooo))

%e ((ooooo)(ooooo)(ooooo)(ooooo)(ooooo)(ooooo))

%e ((oooooooo)(oooooooo)(oooooooo)(oooooooo))

%e (((ooo)(ooo))((ooo)(ooo))((ooo)(ooo))((ooo)(ooo)))

%e ((ooooooooooo)(ooooooooooo)(ooooooooooo))

%e ((ooooooooooooooooo)(ooooooooooooooooo))

%e (End)

%p with(numtheory):

%p a:= proc(n) option remember;

%p `if`(n=0, 1, add(a((n-d)/d), d=divisors(n) minus{1}))

%p end:

%p seq(a(n), n=0..200); # _Alois P. Heinz_, Mar 28 2011

%t a[0] = 1; a[n_] := a[n] = DivisorSum[n, a[(n-#)/#]&, #>1&]; Table[a[n], {n, 0, 100}] (* _Jean-Fran├žois Alcover_, Oct 07 2015 *)

%o (PARI) { A167865(n) = if(n==0,return(1)); sumdiv(n,d, if(d>1, A167865((n-d)\d) ) ) }

%Y Cf. A001678, A003238, A067824, A122651, A167439, A167865, A167866, A184998, A316782.

%K nonn,look

%O 0,7

%A _Max Alekseyev_, Nov 13 2009

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 20:54 EST 2019. Contains 329779 sequences. (Running on oeis4.)