login
A167863
Number of reduced words of length n in Coxeter group on 48 generators S_i with relations (S_i)^2 = (S_i S_j)^15 = I.
1
1, 48, 2256, 106032, 4983504, 234224688, 11008560336, 517402335792, 24317909782224, 1142941759764528, 53718262708932816, 2524758347319842352, 118663642324032590544, 5577191189229531755568, 262127985893787992511696
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170767, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, -1081).
FORMULA
G.f.: (t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1081*t^15 - 46*t^14 - 46*t^13 - 46*t^12 - 46*t^11 - 46*t^10 - 46*t^9 - 46*t^8 - 46*t^7 - 46*t^6 - 46*t^5 - 46*t^4 - 46*t^3 - 46*t^2 - 46*t + 1).
MATHEMATICA
coxG[{15, 1081, -46}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jun 05 2016 *)
CoefficientList[Series[(t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1081*t^15 - 46*t^14 - 46*t^13 - 46*t^12 - 46*t^11 - 46*t^10 - 46*t^9 - 46*t^8 - 46*t^7 - 46*t^6 - 46*t^5 - 46*t^4 - 46*t^3 - 46*t^2 - 46*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jun 28 2016 *)
CROSSREFS
Sequence in context: A166854 A167101 A167645 * A167980 A168725 A168773
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved