login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A167862 Number of reduced words of length n in Coxeter group on 47 generators S_i with relations (S_i)^2 = (S_i S_j)^15 = I. 1

%I

%S 1,47,2162,99452,4574792,210440432,9680259872,445291954112,

%T 20483429889152,942237774900992,43342937645445632,1993775131690499072,

%U 91713656057762957312,4218828178657096036352,194066096218226417672192

%N Number of reduced words of length n in Coxeter group on 47 generators S_i with relations (S_i)^2 = (S_i S_j)^15 = I.

%C The initial terms coincide with those of A170766, although the two sequences are eventually different.

%C Computed with MAGMA using commands similar to those used to compute A154638.

%H G. C. Greubel, <a href="/A167862/b167862.txt">Table of n, a(n) for n = 0..500</a>

%H <a href="/index/Rec#order_15">Index entries for linear recurrences with constant coefficients</a>, signature (45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, -1035).

%F G.f.: (t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1035*t^15 - 45*t^14 - 45*t^13 - 45*t^12 - 45*t^11 - 45*t^10 - 45*t^9 - 45*t^8 - 45*t^7 - 45*t^6 - 45*t^5 - 45*t^4 - 45*t^3 - 45*t^2 - 45*t + 1).

%t CoefficientList[Series[(t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1035*t^15 - 45*t^14 - 45*t^13 - 45*t^12 - 45*t^11 - 45*t^10 - 45*t^9 - 45*t^8 - 45*t^7 - 45*t^6 - 45*t^5 - 45*t^4 - 45*t^3 - 45*t^2 - 45*t + 1), {t, 0, 50}], t] (* _G. C. Greubel_, Jun 28 *)

%K nonn

%O 0,2

%A _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 26 11:20 EST 2020. Contains 331279 sequences. (Running on oeis4.)