OFFSET
1,1
COMMENTS
The smallest number in the sequence that actually contains all 3 ternary digits is 248 = 100012_3. [Corrected by M. F. Hasler, Nov 02 2012]
The number 28 is in A031948 but not in this sequence A167819. This sequence is infinite, e.g. all powers 3^k, k>1 are member. Digit frequencies are [2,1,0] for the first 12 terms (with 3 digits in base 3, from 100[3] to 221[3]), then [3,1,0] for the next 16 terms with 4 digits in base 3 (from 1000[3] to 2221[3]), then [4,1,0] and [3,2,0] (5 digits in base 3, from 10000[3] to 22221[3]), followed by [5,1,0] or [4,2,0] or [3,2,1] (6 digits in base-3, from 10000[3] to 22221[3]), etc. - M. F. Hasler, Nov 02 2012
EXAMPLE
9 = 100_3 is in the sequence, as it has 2 0's, 1 1, and 0 2's.
1 is not in the sequence, as it has the same number (0) of 0's and 2's.
MATHEMATICA
Select[Range[168], Length[Union[DigitCount[ #, 3]]]==3&] [From Zak Seidov, Nov 13 2009]
PROG
CROSSREFS
KEYWORD
base,nonn,fini
AUTHOR
Franklin T. Adams-Watters, Nov 13 2009
STATUS
approved