%I #3 Aug 14 2020 13:51:38
%S 1,7,105,3407,217997,24929035,4863045067
%N Number of admissible basis in the postage stamp problem for n denominations and h = 7 stamps.
%C A basis 1 = b_1 < b_2 ... < b_n is admissible if all the values 1 <= x <= b_n is obtainable as a sum of at most h (not necessarily distinct) numbers in the basis.
%D R. K. Guy, Unsolved Problems in Number Theory, C12.
%H R. Alter and J. A. Barnett, <a href="http://www.jstor.org/stable/2321610">A postage stamp problem</a>, Amer. Math. Monthly, 87 (1980), 206-210.
%H M. F. Challis, <a href="http://dx.doi.org/10.1093/comjnl/36.2.117">Two new techniques for computing extremal h-bases A_k</a>, Comp J 36(2) (1993) 117-126
%H Erich Friedman, <a href="https://erich-friedman.github.io/mathmagic/0403.html">Postage stamp problem</a>
%H W. F. Lunnon, <a href="http://comjnl.oxfordjournals.org/cgi/content/abstract/12/4/377">A postage stamp problem</a>, Comput. J. 12 (1969) 377-380.
%H S. Mossige, <a href="http://www.jstor.org/stable/2007661">Algorithms for Computing the h-Range of the Postage Stamp Problem</a>, Math. Comp. 36 (1981) 575-582
%Y Other enumerations with different parameters: A167809 (h = 2), A167810 (h = 3), A167811 (h = 4), A167812 (h = 5), A167813 (h = 6), A167814 (h = 7).
%Y For h = 2, cf. A008932.
%K hard,more,nonn
%O 1,2
%A Yogy Namara (yogy.namara(AT)gmail.com), Nov 12 2009