login
A167811
Number of admissible basis in the postage stamp problem for n denominations and h = 4 stamps.
6
1, 4, 26, 291, 4752, 109640, 3380466, 136053274, 6963328612, 444765731559
OFFSET
1,2
COMMENTS
A basis 1 = b_1 < b_2 ... < b_n is admissible if all the values 1 <= x <= b_n is obtainable as a sum of at most h (not necessarily distinct) numbers in the basis.
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, C12.
LINKS
R. Alter and J. A. Barnett, A postage stamp problem, Amer. Math. Monthly, 87 (1980), 206-210.
M. F. Challis, Two new techniques for computing extremal h-bases A_k, Comp J 36(2) (1993) 117-126
Erich Friedman, Postage stamp problem
W. F. Lunnon, A postage stamp problem, Comput. J. 12 (1969) 377-380.
CROSSREFS
Other enumerations with different parameters: A167809 (h = 2), A167810 (h = 3), A167811 (h = 4), A167812 (h = 5), A167813 (h = 6), A167814 (h = 7).
For h = 2, cf. A008932.
Sequence in context: A113078 A177451 A304864 * A156306 A054592 A357795
KEYWORD
hard,more,nonn
AUTHOR
Yogy Namara (yogy.namara(AT)gmail.com), Nov 12 2009
STATUS
approved