login
A167785
Number of reduced words of length n in Coxeter group on 34 generators S_i with relations (S_i)^2 = (S_i S_j)^15 = I.
1
1, 34, 1122, 37026, 1221858, 40321314, 1330603362, 43909910946, 1449027061218, 47817893020194, 1577990469666402, 52073685498991266, 1718431621466711778, 56708243508401488674, 1871372035777249126242, 61755277180649221165425
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170753, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, -528).
FORMULA
G.f.: (t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(528*t^15 - 32*t^14 - 32*t^13 - 32*t^12 - 32*t^11 - 32*t^10 - 32*t^9 - 32*t^8 - 32*t^7 - 32*t^6 - 32*t^5 - 32*t^4 - 32*t^3 - 32*t^2 - 32*t + 1).
MATHEMATICA
CoefficientList[Series[(t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(528*t^15 - 32*t^14 - 32*t^13 - 32*t^12 - 32*t^11 - 32*t^10 - 32*t^9 - 32*t^8 - 32*t^7 - 32*t^6 - 32*t^5 - 32*t^4 - 32*t^3 - 32*t^2 - 32*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jun 27 2016 *)
CROSSREFS
Sequence in context: A166682 A167087 A167396 * A167950 A168711 A168759
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved