The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A167784 a(n) = 2^n - (1 - (-1)^n)*3^((n-1)/2). 3
 1, 0, 4, 2, 16, 14, 64, 74, 256, 350, 1024, 1562, 4096, 6734, 16384, 28394, 65536, 117950, 262144, 484922, 1048576, 1979054, 4194304, 8034314, 16777216, 32491550, 67108864, 131029082, 268435456, 527304974, 1073741824, 2118785834, 4294967296, 8503841150 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Binomial transform of A077917, the signed variant of A127864. LINKS Robert Israel, Table of n, a(n) for n = 0..3318 Index entries for linear recurrences with constant coefficients, signature (2,3,-6). FORMULA a(n) = A167936(n+1) - A167936(n). a(2n) = A000302(n). a(2n+1) = 2*A005061(n). a(n) = 2*a(n-1) + 3*a(n-2) - 6*a(n-3). G.f.: (x-1)^2/((2*x-1)*(3*x^2-1)). a(n+4) mod 9 = A153130(n+4) = A146501(n+2), n>=0. a(n) mod 10 = 1, bar(0,4,2,6,4,4,4,6), where bar(...) denotes a periodically repeated sequence of 8 terms. E.g.f.: exp(2*x) - (2/sqrt(3))*sinh(sqrt(3)*x). - G. C. Greubel, Jun 27 2016 MAPLE seq(2^n - (1 - (-1)^n)*3^((n-1)/2), n=0..100); # Robert Israel, Apr 11 2019 MATHEMATICA LinearRecurrence[{2, 3, -6}, {1, 0, 4}, 40] (* Harvey P. Dale, Nov 29 2011 *) PROG (MAGMA) [Floor(2^n+((-1)^n-1)*3^(-1/2+1/2*n)): n in [0..40] ]; // Vincenzo Librandi, Aug 06 2011 Caution: this program gives incorrect results starting at n=103. - Robert Israel, Apr 11 2019 CROSSREFS Cf. A154383. Sequence in context: A154383 A022664 A316463 * A053125 A038232 A254632 Adjacent sequences:  A167781 A167782 A167783 * A167785 A167786 A167787 KEYWORD nonn,easy AUTHOR Paul Curtz, Nov 12 2009 EXTENSIONS Edited and extended by R. J. Mathar, Feb 27 2010 Incorrect b-file corrected by Robert Israel, Apr 11 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 2 08:00 EDT 2020. Contains 334767 sequences. (Running on oeis4.)