The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A167778 Subsequence of A167708 whose indices are 2 mod 5. 7
 66, 22335, 7593834, 2581881225, 877832022666, 298460305825215, 101475626148550434, 34501414430201322345, 11730379430642301046866, 3988294505003952154612095, 1356008401321913090267065434, 461038868154945446738647635465, 156751859164280129978049928992666 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Colin Barker, Table of n, a(n) for n = 0..394 Index entries for linear recurrences with constant coefficients, signature (340,-1). FORMULA a(n) = A167708(5n+2). a(n+2) = 340*a(n+1) - a(n). a(n+1) = 170*a(n) + 39*sqrt(19*a(n)^2-1(39). G.f.: (66 + 22335*x - 66*x*340)/(1 - 340*x + x^2). a(n) = ((66 + 15*sqrt(19))/2)*(170 + 39*sqrt(19))^n + ((66 - 15*sqrt(19)) /2)*(170 - 39*sqrt(19))^n. - Richard Choulet, Nov 13 2009 G.f.: -3*(35*x - 22) / (x^2 - 340*x + 1). - Colin Barker, Nov 16 2015 MAPLE u(0):=66:u(1):=22335:for n from 0 to 20 do u(n+2):=340*u(n+1)-u(n):od:seq(u(n), n=0..20); taylor(((66+22335*z-66*z*340)/(1-340*z+z^2)), z=0, 20); for n from 0 to 20 do u(n):=simplify((15*sqrt(19)+66)/2*(170+39*sqrt(19))^(n)+(-15*sqrt(19)+66)/2*(170-39*sqrt(19))^(n)):od:seq(u(n), n=0..20); MATHEMATICA LinearRecurrence[{340, -1}, {66, 22335}, 20] (* Bruno Berselli, Nov 17 2015 *) PROG (PARI) Vec(-3*(35*x-22)/(x^2-340*x+1) + O(x^20)) \\ Colin Barker, Nov 16 2015 (MAGMA) I:=[66, 22335]; [n le 2 select I[n] else 340*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 17 2015 CROSSREFS Cf. A167708, A167709, A167774, A167775, A167779, A167780. - Richard Choulet, Nov 11 2009 Sequence in context: A282247 A197439 A127706 * A199838 A188453 A278848 Adjacent sequences:  A167775 A167776 A167777 * A167779 A167780 A167781 KEYWORD nonn,easy AUTHOR Richard Choulet, Nov 11 2009 EXTENSIONS Definition corrected by Richard Choulet, Nov 15 2009 Typo in title fixed by Colin Barker, Nov 16 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 5 08:21 EDT 2020. Contains 334829 sequences. (Running on oeis4.)