login
a(n) = prime(n)^2 modulo prime(n+1).
7

%I #35 May 13 2020 06:44:16

%S 1,4,4,5,4,16,4,16,7,4,36,16,4,16,36,36,4,36,16,4,36,16,36,64,16,4,16,

%T 4,16,69,16,36,4,100,4,36,36,16,36,36,4,100,4,16,4,144,144,16,4,16,36,

%U 4,100,36,36,36,4,36,16,4,100,196,16,4,16,196,36,100,4,16,36,64,36,36,16

%N a(n) = prime(n)^2 modulo prime(n+1).

%C Only for three cases n = 4,9,30, a(n) < (prime(n+1)-prime(n))^2 because only in these cases (prime(n+1)-prime(n))^2 > prime(n+1):

%C n = 4: a(4) = 5 < ((p(5)-p(4))^2 = (11-7)^2 = 16) and 16 > 11.

%C n = 9: a(9) = 7 < ((p(10)-p(9))^2 = (29-23)^2 = 36) and 36 > 29.

%C n = 30: a(30) = 69 < ((p(31)-p(30))^2 = (127-113)^2 = 196) and 196 > 127.

%C In all other cases, a(n) = A076821(n) = (prime(n+1)-prime(n))^2, is highly probable but not proved conjecture.

%H Alois P. Heinz, <a href="/A167770/b167770.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = prime(n)^2 modulo prime(n+1).

%F a(n) == A001223(n)^2 (mod A000040(n+1)). - _L. Edson Jeffery_, Oct 01 2014

%p A167770:=n->ithprime(n)^2 mod ithprime(n+1): seq(A167770(n), n=1..70); # _Wesley Ivan Hurt_, Oct 01 2014

%t Table[PowerMod[Prime[n], 2, Prime[n+1]], {n, 221265}]

%o (PARI) a(n)=prime(n)^2%prime(n+1) \\ _M. F. Hasler_, Oct 04 2014

%Y Cf. A076821 (squares of the differences between consecutive primes).

%Y Cf. A001223 (modular square roots of this sequence).

%Y Cf. A000040 (primes), A001248 (squares of primes).

%K nonn

%O 1,2

%A _Zak Seidov_, Nov 11 2009