%I #8 Jun 18 2016 00:43:20
%S 1,2,2,9,2,13,60,-12,68,76,525,-300,774,132,789,5670,-5250,11820,
%T -3636,6702,7734,72765,-92610,212415,-143340,143307,19086,110937,
%U 1081080,-1746360,4286520,-4246200,4156200,-1204200,1305000,1528920
%N A triangle related to the GF(z) formulas of the rows of the ED4 array A167584.
%C The GF(z) formulas given below correspond to the first ten rows of the ED4 array A167584. The polynomials in their numerators lead to the triangle given above.
%e Row 1: GF(z) = 1/(1-z).
%e Row 2: GF(z) = (2*z + 2)/(1-z)^2.
%e Row 3: GF(z) = (9*z^2 + 2*z + 13)/(1-z)^3.
%e Row 4: GF(z) = (60*z^3 - 12*z^2 + 68*z + 76)/(1-z)^4.
%e Row 5: GF(z) = (525*z^4 - 300*z^3 + 774*z^2 + 132*z + 789)/(1-z)^5.
%e Row 6: GF(z) = (5670*z^5 - 5250*z^4 + 11820*z^3 - 3636*z^2 + 6702*z + 7734)/(1-z)^6.
%e Row 7: GF(z) = (72765*z^6 - 92610*z^5 + 212415*z^4 - 143340*z^3 + 143307*z^2 + 19086*z + 110937)/ (1-z)^7.
%e Row 8: GF(z) = (1081080*z^7 - 1746360*z^6 + 4286520*z^5 - 4246200*z^4 + 4156200*z^3 - 1204200*z^2 + 1305000*z + 1528920)/(1-z)^8.
%e Row 9: GF(z) = (18243225*z^8 - 35675640*z^7 + 95176620*z^6 -121723560*z^5 + 132769350*z^4 - 73816200*z^3 + 45017100*z^2 + 4887720*z + 28018665) / (1-z)^9.
%e Row 10: GF(z) = (344594250*z^9 - 790539750*z^8 + 2299457160*z^7 - 3567314520*z^6 + 4441299660*z^5 - 3398138100*z^4 + 2160066600*z^3 - 550619640*z^2 + 421244730*z + 497895210)/(1-z)^10.
%Y A167584 is the ED4 array.
%Y A001193 equals the first left hand column.
%Y A024199 equals the first right hand column.
%Y A002866 equals the row sums.
%K sign,tabl
%O 1,2
%A _Johannes W. Meijer_, Nov 10 2009