



2, 3, 5, 13, 31, 61, 139, 283, 571, 1153, 2311, 4651, 9343, 19141, 38569, 77419, 154873, 310231, 621631, 1243483, 2486971, 4974721
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Conjecture: each term > 3 of the sequence is the greater member of a twin prime pair (A006512).
Indices of the records are 1, 2, 4, 6, 9, 10, 15, 18, 21, 25, 28, 30, 38, 72, 90, ... [R. J. Mathar, Nov 05 2009]
One can formulate a similar conjecture without verification of the primality of the terms (see Conjecture 4 in my paper). [Vladimir Shevelev, Nov 13 2009]


LINKS

Table of n, a(n) for n=1..22.
E. S. Rowland, A natural primegenerating recurrence, Journal of Integer Sequences, Vol.11 (2008), Article 08.2.8.
E. S. Rowland, A natural primegenerating recurrence, arXiv:0710.3217 [math.NT], 20072008.
V. Shevelev, A new generator of primes based on the Rowland idea, arXiv:0910.4676 [math.NT], 2009.
V. Shevelev, Three theorems on twin primes, arXiv:0911.5478 [math.NT], 20092010. [Vladimir Shevelev, Dec 03 2009]


MATHEMATICA

nxt[{n_, a_}] := {n + 1, If[EvenQ[n], a + GCD[n+1, a], a + GCD[n1, a]]};
A167494 = DeleteCases[Differences[Transpose[NestList[nxt, {1, 2}, 10^7]][[2]]], 1];
Tally[A167494][[All, 1]] //. {a1___, a2_, a3___, a4_, a5___} /; a4 <= a2 :> {a1, a2, a3, a5} (* JeanFrançois Alcover, Oct 29 2018, using Harvey P. Dale's code for A167494 *)


CROSSREFS

Cf. A167494, A167493, A167197, A167195, A167170, A167168, A106108, A132199, A167054, A167053, A166944, A166945, A116533, A163961, A163963, A084662, A084663, A134162, A135506, A135508, A118679, A120293.
Sequence in context: A038879 A162390 A108515 * A041519 A060434 A175093
Adjacent sequences: A167492 A167493 A167494 * A167496 A167497 A167498


KEYWORD

nonn,more


AUTHOR

Vladimir Shevelev, Nov 05 2009


EXTENSIONS

Simplified the definition to include all records; one term added by R. J. Mathar, Nov 05 2009
a(16) to a(21) from R. J. Mathar, Nov 19 2009
a(22) from JeanFrançois Alcover, Oct 29 2018


STATUS

approved



