|
|
A167489
|
|
Product of run lengths in binary representation of n.
|
|
18
|
|
|
1, 1, 1, 2, 2, 1, 2, 3, 3, 2, 1, 2, 4, 2, 3, 4, 4, 3, 2, 4, 2, 1, 2, 3, 6, 4, 2, 4, 6, 3, 4, 5, 5, 4, 3, 6, 4, 2, 4, 6, 3, 2, 1, 2, 4, 2, 3, 4, 8, 6, 4, 8, 4, 2, 4, 6, 9, 6, 3, 6, 8, 4, 5, 6, 6, 5, 4, 8, 6, 3, 6, 9, 6, 4, 2, 4, 8, 4, 6, 8, 4, 3, 2, 4, 2, 1, 2, 3, 6, 4, 2, 4, 6, 3, 4, 5, 10, 8, 6, 12, 8, 4, 8
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
LINKS
|
Antti Karttunen, Table of n, a(n) for n = 0..8192
Index entries for sequences related to binary expansion of n
|
|
FORMULA
|
a(n) = A227349(n) * A227350(n) = A227355(A227352(2n+1)). - Antti Karttunen, Jul 25 2013
a(n) = A284558(n) * A284559(n) = A284582(n) * A284583(n). - Antti Karttunen, Apr 16 2017
|
|
EXAMPLE
|
a(56) = 9, because 56 in binary is written 111000 giving the run lengths 3,3 and 3x3 = 9.
a(99) = 12, because 99 in binary is written 1100011 giving the run lengths 2,3,2, and 2x3x2 = 12.
|
|
MATHEMATICA
|
Table[ Times @@ (Length /@ Split[IntegerDigits[n, 2]]), {n, 0, 100}](* Olivier Gérard, Jul 05 2013 *)
|
|
PROG
|
(Scheme)
(define (A167489 n) (apply * (binexp->runcount1list n)))
(define (binexp->runcount1list n) (if (zero? n) (list) (let loop ((n n) (rc (list)) (count 0) (prev-bit (modulo n 2))) (if (zero? n) (cons count rc) (if (eq? (modulo n 2) prev-bit) (loop (floor->exact (/ n 2)) rc (1+ count) (modulo n 2)) (loop (floor->exact (/ n 2)) (cons count rc) 1 (modulo n 2)))))))
;; Antti Karttunen, Jul 05 2013
(Haskell)
import Data.List (group)
a167489 = product . map length . group . a030308_row
-- Reinhard Zumkeller, Jul 05 2013
(Python)
def A167489(n):
'''Product of run lengths in binary representation of n.'''
p = 1
b = n%2
i = 0
while (n != 0):
n >>= 1
i += 1
if ((n%2) != b):
p *= i
i = 0
b = n%2
return(p)
# Antti Karttunen, Jul 24 2013 (Cf. Python program for A227184).
(PARI) a(n) = {my(p=1, b=n%2, i=0); while(n!=0, n=n>>1; i=i+1; if((n%2)!=b, p=p*i; i=0; b=n%2)); p} \\ Indranil Ghosh, Apr 17 2017, after the Python Program by Antti Karttunen
|
|
CROSSREFS
|
Row products of A101211 and A227736 (for n > 0).
Cf. A167490 (smallest number with binary run length product = n).
Cf. A167491 (members of A167490 sorted in ascending order).
Cf. A227355, A227184, A227190.
Cf. A227349, A227350, A227352, A246588, A284558, A284559, A284582, A284583.
Differs from similar A284579 for the first time at n=56, where a(56) = 9, while A284579(56) = 5.
Sequence in context: A064742 A227185 A284579 * A256790 A337225 A256478
Adjacent sequences: A167486 A167487 A167488 * A167490 A167491 A167492
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Andrew Weimholt, Nov 05 2009
|
|
STATUS
|
approved
|
|
|
|