|
|
A167439
|
|
Length of the longest partition of n into distinct parts, with each part divisible by the next one.
|
|
4
|
|
|
0, 1, 1, 2, 2, 2, 2, 3, 2, 3, 3, 3, 2, 3, 3, 4, 3, 3, 3, 4, 3, 4, 4, 4, 2, 3, 3, 4, 4, 4, 4, 5, 3, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 5, 4, 5, 5, 5, 3, 4, 4, 4, 4, 4, 4, 5, 4, 5, 5, 5, 4, 5, 5, 6, 5, 4, 4, 5, 4, 5, 5, 5, 4, 5, 4, 5, 5, 5, 5, 6, 4, 5, 5, 5, 4, 5, 5, 6, 5, 5, 5, 6, 5, 6, 6, 6, 5, 4, 4, 5, 5, 5, 4, 5, 4
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
COMMENTS
|
a(n) > sqrt(log(n))/2.
|
|
REFERENCES
|
V. A. Sadovnichiy, A. A. Grigoryan and S. V. Konyagin (1987), "Problems of mathematical olympiads for university students". Section 4.1, problem 25. (in Russian)
|
|
LINKS
|
Table of n, a(n) for n=0..104.
|
|
FORMULA
|
a(n) = max{ A167866(n), A167866(n-1) + 1 }.
|
|
PROG
|
(PARI) { a(n, m=0) = local(r=0); if(n==0, return(0)); fordiv(n, d, if(d<=m, next); r=max(r, 1+a((n-d)\d, 1)) ); r }
|
|
CROSSREFS
|
Cf. A122651, A167439, A167865, A167866.
Sequence in context: A068211 A236832 A089050 * A272314 A241216 A125173
Adjacent sequences: A167436 A167437 A167438 * A167440 A167441 A167442
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Max Alekseyev, Nov 13 2009, Nov 15 2009
|
|
STATUS
|
approved
|
|
|
|