This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A167433 Row sums of the Riordan array (1-4x+4x^2, x(1-2x)) (A167431). 6
 1, -3, -1, 5, 7, -3, -17, -11, 23, 45, -1, -91, -89, 93, 271, 85, -457, -627, 287, 1541, 967, -2115, -4049, 181, 8279, 7917, -8641, -24475, -7193, 41757, 56143, -27371, -139657, -84915, 194399, 364229, -24569, -753027, -703889, 802165, 2209943 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The sequences A001607, A077020, A107920, A167433, A169998 are all essentially the same except for signs. Variants are A107920 and A001607. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (1,-2). FORMULA G.f.: (1-4x+4x^2)/(1-x+2x^2). From G. C. Greubel, Jun 13 2016: (Start) a(n) = a(n-1) - 2*a(n-2). a(n) = -(2^((n+2)/2)/sqrt(7))*( 2*sin(n*arctan(sqrt(7))) + sqrt(2)*sin((n+1)*arctan(sqrt(7))) ), n>=1, and a(0)=1. (End) MATHEMATICA a[n_] := Sin[n*ArcTan[Sqrt[7]]]; FullSimplify[Join[{1}, Table[- (2^(n/2 + 1)/Sqrt[7])*(2*a[n] + Sqrt[2]*a[n + 1]), {n, 1, 100}]]] (* or *) Join[{1}, LinearRecurrence[{1, -2}, {-3, -1}, 100]] (* G. C. Greubel, Jun 13 2016 *) CROSSREFS Sequence in context: A265707 A188146 A001607 * A077020 A107920 A169998 Adjacent sequences:  A167430 A167431 A167432 * A167434 A167435 A167436 KEYWORD easy,sign AUTHOR Paul Barry, Nov 03 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 18 16:40 EST 2019. Contains 319271 sequences. (Running on oeis4.)