login
A167412
Primes p such that sum of (digits^2) + 1 is prime.
2
2, 11, 13, 19, 31, 37, 59, 73, 79, 97, 101, 103, 109, 163, 181, 211, 233, 251, 257, 277, 307, 349, 383, 439, 499, 509, 521, 541, 563, 587, 613, 631, 653, 709, 727, 769, 787, 811, 857, 877, 907, 929, 967, 1009, 1021, 1063, 1117, 1151, 1153, 1171, 1201, 1223
OFFSET
1,1
COMMENTS
11 is a term because 1^2 + 1^2 + 1 = 3 (prime);
163 is a term because 1^2 + 6^2 + 3^2 + 1 = 47;
277 is a term because 2^2 + 7^2 + 7^2 + 1 = 103.
LINKS
MAPLE
A003132 := proc(n) local d; add(d^2, d=convert(n, base, 10)) ; end proc: A167412 := proc(n) local p; if n = 1 then 2; else p := nextprime(procname(n-1)) ; while not isprime(A003132(p)+1) do p := nextprime(p) ; end do ; return p end if ; end proc: seq(A167412(n), n=1..80) ; # R. J. Mathar, Nov 04 2009
MATHEMATICA
Select[Prime[Range[2000]], PrimeQ[Total[IntegerDigits[#]^2] + 1]&] (* Vincenzo Librandi, Sep 25 2014 *)
CROSSREFS
Cf. A167414.
Sequence in context: A207039 A095743 A106984 * A166561 A179462 A207192
KEYWORD
nonn,base
AUTHOR
Vincenzo Librandi, Nov 03 2009
EXTENSIONS
2, 211, 233 inserted and more terms after 653 added by R. J. Mathar, Nov 04 2009
STATUS
approved