%I
%S 1,2,5,8,11,12,17,20,23,27,29,38,41,47,52,53,57,58,59,68,71,72,76,83,
%T 87,89,101,107,113,117,118,124,131,133,137,149,158,162,164,167,173,
%U 177,178,179,188,191,197,203,218,227,233,236,237,239,243,244,247,251,257
%N Very Orderly Numbers: a number, N, is "very orderly" if the set of the divisors of N is congruent to the set {1,2,...,tau(N)} mod tau(N)+1.
%C The very orderly numbers are orderly numbers (Cf. A167408) with K = tau(N)+1
%H A. Weimholt, <a href="/A167409/b167409.txt">Table of n, a(n) for n=1..10000</a>
%t veryOrderlyQ[n_] := (If[tau = DivisorSigma[0, n]; Union[Mod[Divisors[n], tau + 1]] == Range[tau], Return[True]]; False); Select[ Range[260], veryOrderlyQ] (* _Jean-François Alcover_, Aug 19 2013 *)
%o (PARI)
%o vo(n)=#(n=divisors(n))==#(n=Set(n%(1+#n))) & n[1]!="0"
%o for(n=1,999,vo(n)&print1(n", ")) \\ _M. F. Hasler_
%Y Cf. A167408 - Orderly Numbers
%Y Cf. A167410 - Disorderly Numbers - numbers not in A167408
%Y Cf. A167411 - Minimal K Values for the Orderly Numbers
%K nonn
%O 1,2
%A _Andrew Weimholt_, Nov 03 2009
|