

A167371


Triangle, read by rows, given by [0,1,1,0,0,0,0,0,0,0,0,...] DELTA [1,0,1,1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.


0



1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Diagonal sums: A060576.
A167374*A154325 formatted as lower triangular matrix.  Philippe Deléham, Nov 19 2009


LINKS

Table of n, a(n) for n=0..104.


FORMULA

Sum_{k=0..n} T(n,k)*x^k = A000007(n), A046698(n+1), A111286(n+1), A027327(n) for x= 0, 1, 2, 3 respectively.
G.f.: (1+x^2*y)/(1x*y).  Philippe Deléham, Nov 09 2013
T(n,k) = T(n1,k1) for n > 2, T(0,0) = T(1,1) = T(2,1) = T(2,2) = 1, T(1,0) = T(2,0) = 0, T(n,k) = 0 if k < 0 or if k > n.  Philippe Deléham, Nov 09 2013


EXAMPLE

Triangle begins:
1;
0, 1;
0, 1, 1;
0, 0, 1, 1;
0, 0, 0, 1, 1;
0, 0, 0, 0, 1, 1; ...


CROSSREFS

Cf. A097806, A103451.
Sequence in context: A296212 A189921 A341346 * A127241 A087748 A117446
Adjacent sequences: A167368 A167369 A167370 * A167372 A167373 A167374


KEYWORD

nonn,tabl


AUTHOR

Philippe Deléham, Nov 02 2009


STATUS

approved



