login
A167346
Totally multiplicative sequence with a(p) = (p-1)*(p+2) = p^2+p-2 for prime p.
1
1, 4, 10, 16, 28, 40, 54, 64, 100, 112, 130, 160, 180, 216, 280, 256, 304, 400, 378, 448, 540, 520, 550, 640, 784, 720, 1000, 864, 868, 1120, 990, 1024, 1300, 1216, 1512, 1600, 1404, 1512, 1800, 1792, 1720, 2160, 1890, 2080, 2800, 2200, 2254, 2560, 2916, 3136
OFFSET
1,2
LINKS
FORMULA
Multiplicative with a(p^e) = ((p-1)*(p+2))^e. If n = Product p(k)^e(k) then a(n) = Product ((p(k)-1)*(p(k)+2))^e(k).
a(n) = A003958(n) * A166590(n).
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + 1/(p^2 + p - 3)) = 1.611922780552146990915794949248803526278171368254928942581015265238806543... - Vaclav Kotesovec, Sep 20 2020
Sum_{k=1..n} a(k) ~ c * n^3, where c = 2/(Pi^2 * Product_{p prime} (1 - 2/p^2 + 1/p^3 + 2/p^4)) = 0.3809790887... . - Amiram Eldar, Nov 05 2022
MATHEMATICA
a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] - 1)^fi[[All, 2]])); b[1] = 1; b[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] + 2)^fi[[All, 2]])); Table[a[n]*b[n], {n, 1, 100}] (* G. C. Greubel, Jun 10 2016 *)
f[p_, e_] := ((p - 1)*(p + 2))^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 05 2022 *)
PROG
(PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, ((f[i, 1]-1)*(f[i, 1]+2))^f[i, 2]); } \\ Amiram Eldar, Nov 05 2022
CROSSREFS
Sequence in context: A343907 A191115 A073121 * A307274 A027430 A298031
KEYWORD
nonn,mult
AUTHOR
Jaroslav Krizek, Nov 01 2009
STATUS
approved