|
|
A167343
|
|
Totally multiplicative sequence with a(p) = (p-1)^2 = p^2-2p+1 for prime p.
|
|
1
|
|
|
1, 1, 4, 1, 16, 4, 36, 1, 16, 16, 100, 4, 144, 36, 64, 1, 256, 16, 324, 16, 144, 100, 484, 4, 256, 144, 64, 36, 784, 64, 900, 1, 400, 256, 576, 16, 1296, 324, 576, 16, 1600, 144, 1764, 100, 256, 484, 2116, 4, 1296, 256
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 1..1000
|
|
FORMULA
|
Multiplicative with a(p^e) = ((p-1)^2)^e. If n = Product p(k)^e(k) then a(n) = Product ((p(k)-1)^2)^e(k). a(n) = A003958(n)^2.
|
|
MATHEMATICA
|
a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] - 1)^fi[[All, 2]])); Table[a[n]^2, {n, 1, 100}] (* G. C. Greubel, Jun 10 2016 *)
|
|
CROSSREFS
|
Sequence in context: A262616 A309074 A175844 * A094361 A187926 A285281
Adjacent sequences: A167340 A167341 A167342 * A167344 A167345 A167346
|
|
KEYWORD
|
nonn,mult
|
|
AUTHOR
|
Jaroslav Krizek, Nov 01 2009
|
|
STATUS
|
approved
|
|
|
|