login
Janet's sequence: Number of elements for each successively filled electronic subshell of an atom.
14

%I #96 Feb 01 2024 04:19:12

%S 2,2,6,2,6,2,10,6,2,10,6,2,14,10,6,2,14,10,6,2,18,14,10,6,2,18,14,10,

%T 6,2,22,18,14,10,6,2,22,18,14,10,6,2,26,22,18,14,10,6,2,26,22,18,14,

%U 10,6,2,30,26,22,18,14,10,6,2,30,26,22,18,14,10,6

%N Janet's sequence: Number of elements for each successively filled electronic subshell of an atom.

%C The s-block is placed at

%C * the left, except row 1 (for Mendeleev-Moseley-Seaborg periodic table)

%C * the right (for Janet periodic table)

%C The number of elements in each block of Janet's periodic table are

%C s-block (1s to 8s): 8*2 = 16 elements;

%C p-block (2p to 7p): 6*6 = 36 elements;

%C d-block (3d to 6d): 4*10 = 40 elements;

%C f-block (4f to 5f): 2*14 = 28 elements.

%C The atomic numbers of elements in each block of Janet's periodic table are

%C s-block: 1,2, 3,4, 11,12, 19,20, 37,38, 55,56, 87,88, 119,120 (cf. A160914)

%C p-block: 5..10, 13..18, 31..36, 49..54, 81..86, 113..118 (cf. A138469)

%C d-block: 21..30, 39..48, 71..80, 103..112 (cf. A199934)

%C f-block: 57..70, 89..102 (cf. A217923).

%C The number of elements for each successive filled subshell are

%C s-block (1s): a(0)=2 terms (for H and He, i.e., 1 and 2);

%C s-block (2s): a(1)=2 terms (for Li and Be, i.e., 3 and 4);

%C p-block (2p): a(2)=6 terms (for B,C,N,O,F,Ne, i.e., 5 to 10);

%C s-block (3s): a(3)=2 terms (for Na,Mg, i.e., 11 and 12);

%C p-block (3p): a(4)=6 terms (for Al,Si,P,S,Cl,Ar, i.e., 13 to 18);

%C ...

%C Reference, 2 leaflet 2, with Janet form (5). Extended.

%C From _Daniel Forgues_, May 09 2011: (Start)

%C Janet also envisaged an 'element zero' ('neutronium'?) - whose 'atom' would consist of two neutrons (and thus zero electrons, which would give a(0) = 0) and he speculated that this would be the link to a mirror-image table of elements with negative atomic numbers - in effect anti-matter (which would give a(-n) = -a(n), since positrons are negated electrons).

%C Maximum number of electrons for successive subshells of each shell of an atom, in the building up order (per aufbau principle and Madelung's rule).

%C Every term is twice an odd number since each filled subshell in block l has m going from -l to + l (2l+1 values,) each with 2 electrons (spin +1/2 and spin -1/2).

%C Blocks:

%C l=0: s (2 electrons) (first subshell of a shell, new period of Mendeleev's table)

%C l=1: p (6 electrons) (except for first shell, last subshell of a shell)

%C l=2: d (10 electrons)

%C l=3: f (14 electrons)

%C l=4: g (18 electrons)

%C ...

%C l=l: ... (2*(2l+1) electrons)

%C The first subshell of the k-th shell has l = 0, k >= 1.

%C The second subshell of the k-th shell has l = floor(k/2), k >= 2.

%C The following subshells of the k-th shell have l decrementing down to 1, k >= 2.

%C (End)

%C Concatenation of finite arithmetic sequences, each followed by 2: { }, 2, { }, 2, {6}, 2, {6}, 2, {10, 6}, 2, {10, 6}, 2, {14, 10, 6}, 2, {14, 10, 6}, 2, {18, 14, 10, 6}, 2, {18, 14, 10, 6}, 2, ... - _Daniel Forgues_, May 15 2011

%C Named after the French mathematician Charles Janet (1849-1932). - _Amiram Eldar_, Jun 22 2021

%D Charles Janet, Considérations sur la structure du noyau de l'atome, N 5, Décembre 1929, Beauvais, 2+45 pages, 4 leaflets.

%H Daniel Forgues, <a href="/A167268/b167268.txt">Table of n, a(n) for n = 1..9899</a>

%H The Chemogenesis web book, <a href="http://www.meta-synthesis.com/webbook/34_qn/qn_to_pt.html">Quantum Numbers to Periodic Tables</a>.

%H Szymon Łukaszyk and Wawrzyniec Bieniawski, <a href="https://doi.org/10.20944/preprints202401.1113.v1">Assembly Theory of Binary Messages (How to Assemble a Black Hole and Use it to Assemble New Binary Information?)</a>, Preprints (2024).

%F a(n) = 4*((-n) mod round(sqrt(n))) + 2. - _Jon E. Schoenfield_, Sep 08 2013

%F a(n) = 4*A216607(n) + 2. - _Szymon Lukaszyk_, Oct 27 2023

%t row[n_] := Range[2, 4*Floor[n/2] + 2, 4]; Flatten[ Table[ row[n] // Reverse, {n, 0, 15}]] (* _Jean-François Alcover_, Oct 02 2012 *)

%o (Python)

%o from mpmath.libmp import sqrtrem

%o def a(n):

%o s, r = sqrtrem(n)

%o return 4 * (-n % (s + (r>s))) + 2

%o # _Christoph B. Kassir_, Apr 07 2022

%Y Cf. A016825, A160914, A138469, A199934, A216607.

%K nonn,easy

%O 1,1

%A _Paul Curtz_, Oct 31 2009

%E Edited by _Daniel Forgues_, May 09 2011