The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A167167 A001045 with a(0) replaced by -1. 2
 -1, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, 1365, 2731, 5461, 10923, 21845, 43691, 87381, 174763, 349525, 699051, 1398101, 2796203, 5592405, 11184811, 22369621, 44739243, 89478485, 178956971, 357913941, 715827883, 1431655765, 2863311531 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Essentially the same as A001045, and perhaps also A152046. Also the binomial transform of the sequence with terms (-1)^(n+1)*A128209(n). LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (1,2). FORMULA a(n) = A001045(n), n>0. a(n) + a(n+1) = 2*A001782(n) = 2*A131577(n) = A155559(n) = A090129(n+2), n>0. G.f.: (2*x^2 + 2*x - 1)/((1+x)*(1-2*x)). E.g.f.: (exp(2*x) - exp(-x) - 3)/3. - G. C. Greubel, Dec 01 2019 MAPLE seq( `if`(n=0, -1, (2^n -(-1)^n)/3), n=0..35); # G. C. Greubel, Dec 01 2019 MATHEMATICA CoefficientList[Series[(2*x-1+2*x^2)/((1+x)*(1-2*x)), {x, 0, 35}], x] (* G. C. Greubel, Jun 04 2016 *) Table[If[n==0, -1, (2^n -(-1)^n)/3], {n, 0, 35}] (* G. C. Greubel, Dec 01 2019 *) PROG (PARI) vector(36, n, if(n==1, -1, (2^(n-1) +(-1)^n)/3 ) ) \\ G. C. Greubel, Dec 01 2019 (MAGMA) [-1] cat [(2^n -(-1)^n)/3): n in [1..35]]; // G. C. Greubel, Dec 01 2019 (Sage) [-1]+[lucas_number1(n, 1, -2) for n in (1..35)] # G. C. Greubel, Dec 01 2019 (GAP) Concatenation([-1], List([1..35], n-> (2^n -(-1)^n)/3) )); # G. C. Greubel, Dec 01 2019 CROSSREFS Sequence in context: A284539 A154917 A328284 * A001045 A077925 A152046 Adjacent sequences:  A167164 A167165 A167166 * A167168 A167169 A167170 KEYWORD sign,less AUTHOR Paul Curtz, Oct 29 2009 EXTENSIONS Edited and extended by R. J. Mathar, Nov 01 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 22 18:24 EDT 2021. Contains 343177 sequences. (Running on oeis4.)