%I #18 Oct 09 2021 06:51:44
%S 0,1,0,1,2,3,1,2,3,5,3,4,7,10,6,6,7,12,9,8,15,20,11,12,16,21,18,16,24,
%T 32,24,18,26,37,23,24,38,45,37,30,33,52,44,34,56,69,45,40,54,66,58,48,
%U 66,92,68,49,71,98,70,63,96,104,92,74,80,122,98,72,120
%N Number of n-vertex 5-hedrites.
%C A k-hedrite is a 4-regular planar graph whose faces have sizes 2, 3 and 4 only and the total number of faces of sizes 2 and 3 is k.
%H Mathieu Dutour Sikiric, Michel Deza, <a href="http://arxiv.org/abs/0910.5323">4-regular and self-dual analogs of fullerenes</a>, arXiv:0910.5323 [math.GT], 2009.
%Y Cf. A167156, A167158, A167159, A111361.
%K nonn
%O 2,5
%A _Jonathan Vos Post_, Oct 29 2009
%E New name from _Andrey Zabolotskiy_, Jul 05 2017