The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A167137 E.g.f.: P(exp(x)-1) where P(x) is the g.f. of the partition numbers (A000041). 17
 1, 1, 5, 31, 257, 2551, 30065, 407191, 6214577, 105530071, 1972879025, 40213910551, 886979957297, 21044674731991, 534313527291185, 14448883517785111, 414475305054698417, 12568507978358276311, 401658204472560090545, 13490011548122407566871, 474964861088609044357937, 17491333169997896126211031 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS CONJECTURE: Sum_{n>=0} a(n)^m * log(1+x)^n/n! is an integer series in x for all integer m>0; see A167138 and A167139 for examples. LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..400 FORMULA a(n) = Sum_{k=0..n} A000041(k)*Stirling2(n,k)*k! where A000041 is the partition numbers. E.g.f.: exp( Sum_{n>=1} sigma(n)*[exp(x)-1]^n/n ). Sum_{n>=0} a(n) * log(1+x)^n/n! = g.f. of the partition numbers (A000041). Sum_{n>=0} a(n)^2*log(1+x)^n/n! = g.f. of A167138. From Peter Bala, Sep 18 2013: (Start) Sum {n >= 0} (-1)^n*a(n)*(log(1 - x))^n/n! = 1 + x + 3*x^2 + 8*x^3 + 21*x^4 + ... is the o.g.f. of A218482. a(n) is always odd. Congruences for n >= 1: a(2*n) = 2 (mod 3); a(4*n) = 2 (mod 5); a(6*n) = 0 (mod 7); a(10*n) = 7 (mod 11); a(12*n) = 5 (mod 13); a(16*n) = 0 (mod 17). (End) From Vaclav Kotesovec, Jun 17 2018: (Start) a(n) ~ n! * exp((1/log(2) - 1) * Pi^2 / 24 + Pi*sqrt(n/(3*log(2)))) / (4 * sqrt(3) * n * (log(2))^n). a(n) ~ sqrt(Pi) * exp((1/log(2) - 1) * Pi^2 / 24 + Pi*sqrt(n/(3*log(2))) - n) * n^(n + 1/2) / (2^(3/2) * sqrt(3) * n * (log(2))^n). (End) EXAMPLE E.g.f.: A(x) = 1 + x + 5*x^2/2! + 31*x^3/3! + 257*x^4/4! +... A(log(1+x)) = P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 +... MATHEMATICA Table[Sum[PartitionsP[k]*StirlingS2[n, k]*k!, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 21 2018 *) PROG (PARI) {a(n)=if(n==0, 1, n!*polcoeff(exp(sum(m=1, n, sigma(m)*(exp(x+x*O(x^n))-1)^m/m) ), n))} (PARI) {Stirling2(n, k)=if(k<0|k>n, 0, sum(i=0, k, (-1)^i*binomial(k, i)/k!*(k-i)^n))} {a(n)=sum(k=0, n, numbpart(k)*Stirling2(n, k)*k!)} (PARI) x='x+O('x^66); Vec( serlaplace( 1/eta(exp(x)-1) ) ) \\ Joerg Arndt, Sep 18 2013 CROSSREFS Cf. A167138, A000041, A019538 (Stirling2), A218482, A305550, A306045, A320349. Sequence in context: A056541 A291885 A126121 * A279434 A000556 A320512 Adjacent sequences:  A167134 A167135 A167136 * A167138 A167139 A167140 KEYWORD nonn AUTHOR Paul D. Hanna, Nov 03 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 10 22:05 EDT 2021. Contains 342856 sequences. (Running on oeis4.)