login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A167119 Primes congruent to 2, 3, 5, 7 or 11 (mod 13). 5
2, 3, 5, 7, 11, 29, 31, 37, 41, 59, 67, 83, 89, 107, 109, 137, 163, 167, 193, 197, 211, 223, 239, 241, 263, 271, 293, 317, 349, 353, 367, 379, 397, 401, 419, 421, 431, 449, 457, 479, 499, 509, 523, 557, 577, 587, 601, 613, 631, 653, 661, 683, 691, 709, 733, 739, 743, 757 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Primes which have a remainder mod 13 that is prime.

Union of A141858, A100202, A102732, A140371 and A140373. - R. J. Mathar, Oct 29 2009

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

EXAMPLE

11 mod 13 = 11, 29 mod 13 = 3, 31 mod 13 = 5, hence 11, 29 and 31 are in the sequence.

MATHEMATICA

f[n_]:=PrimeQ[Mod[n, 13]]; lst={}; Do[p=Prime[n]; If[f[p], AppendTo[lst, p]], {n, 6, 6!}]; lst

Select[Prime[Range[4000]], MemberQ[{2, 3, 5, 7, 11}, Mod[#, 13]]&] (* Vincenzo Librandi, Aug 05 2012 *)

PROG

(PARI) {forprime(p=2, 740, if(isprime(p%13), print1(p, ", ")))} \\ Klaus Brockhaus, Oct 28 2009

(MAGMA) [ p: p in PrimesUpTo(740) | p mod 13 in {2, 3, 5, 7, 11} ]; // Klaus Brockhaus, Oct 28 2009

CROSSREFS

Cf. A003627, A045326, A003631, A045309, A045314, A042987, A078403, A042993, A167134, A167135: primes p such that p mod k is prime, for k = 3..12 resp.

Sequence in context: A107367 A036342 A114421 * A165682 A296924 A175711

Adjacent sequences:  A167116 A167117 A167118 * A167120 A167121 A167122

KEYWORD

nonn,easy

AUTHOR

Vladimir Joseph Stephan Orlovsky, Oct 27 2009

EXTENSIONS

Edited by Klaus Brockhaus and R. J. Mathar, Oct 28 2009 and Oct 29 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 12 15:00 EDT 2021. Contains 342921 sequences. (Running on oeis4.)