login
A167105
Number of reduced words of length n in Coxeter group on 4 generators S_i with relations (S_i)^2 = (S_i S_j)^14 = I.
1
1, 4, 12, 36, 108, 324, 972, 2916, 8748, 26244, 78732, 236196, 708588, 2125764, 6377286, 19131840, 57395472, 172186272, 516558384, 1549673856, 4649017680, 13947041376, 41841089136, 125523162432, 376569172368, 1129706572320
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A003946, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -3).
FORMULA
G.f.: (t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(3*t^14 - 2*t^13 - 2*t^12 - 2*t^11 - 2*t^10 - 2*t^9 - 2*t^8 - 2*t^7 - 2*t^6 - 2*t^5 - 2*t^4 - 2*t^3 - 2*t^2 - 2*t + 1).
MATHEMATICA
CoefficientList[Series[(t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1) / (3*t^14 - 2*t^13 - 2*t^12 - 2*t^11 - 2*t^10 - 2*t^9 - 2*t^8 - 2*t^7 - 2*t^6 - 2*t^5 - 2*t^4 - 2*t^3 - 2*t^2 - 2*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jun 03 2016 *)
coxG[{14, 3, -2, 30}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Nov 11 2016 *)
CROSSREFS
Sequence in context: A166328 A166468 A166858 * A167649 A167882 A168681
KEYWORD
nonn,easy
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved