login
A167069
Number of spanning trees in G X P_n, where G = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {4, 5}}.
1
3, 1005, 250848, 60075885, 14263332015, 3379514561280, 800337094071879, 189513130911442365, 44873808170614072416, 10625354802279238810125, 2515898969449422698378427, 595720806457312484163072000, 141056237447350542048435569739
OFFSET
1,1
REFERENCES
F. Faase, On the number of specific spanning subgraphs of the graphs A X P_n, Ars Combin. 49 (1998), 129-154.
FORMULA
a(n) = 335 a(n-1)
- 26224 a(n-2)
+ 744035 a(n-3)
- 10084457 a(n-4)
+ 72968360 a(n-5)
- 295849710 a(n-6)
+ 685799270 a(n-7)
- 909474816 a(n-8)
+ 685799270 a(n-9)
- 295849710 a(n-10)
+ 72968360 a(n-11)
- 10084457 a(n-12)
+ 744035 a(n-13)
- 26224 a(n-14)
+ 335 a(n-15)
- a(n-16)
G.f.: -3x(x^14 -2385x^12 +54940x^11 -451104x^10 +1542340x^9 -2024890x^8 +2024890x^6 -1542340x^5 +451104x^4 -54940x^3 +2385x^2 -1)/ (x^16 -335x^15 +26224x^14 -744035x^13 +10084457x^12 -72968360x^11 +295849710x^10 -685799270x^9 +909474816x^8 -685799270x^7 +295849710x^6 -72968360x^5 +10084457x^4 -744035x^3 +26224x^2 -335x +1).
CROSSREFS
Sequence in context: A145231 A318480 A358269 * A024046 A152505 A139301
KEYWORD
nonn
AUTHOR
STATUS
approved