The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A167049 Number of reduced words of length n in Coxeter group on 19 generators S_i with relations (S_i)^2 = (S_i S_j)^13 = I. 2
 1, 19, 342, 6156, 110808, 1994544, 35901792, 646232256, 11632180608, 209379250944, 3768826516992, 67838877305856, 1221099791505408, 21979796247097173, 395636332447746036, 7121453984059373415 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The initial terms coincide with those of A170738, although the two sequences are eventually different. Computed with MAGMA using commands similar to those used to compute A154638. LINKS G. C. Greubel, Table of n, a(n) for n = 0..500 Index entries for linear recurrences with constant coefficients, signature (17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, -153). FORMULA G.f.: (t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(153*t^13 - 17*t^12 - 17*t^11 - 17*t^10 - 17*t^9 - 17*t^8 - 17*t^7 - 17*t^6 - 17*t^5 - 17*t^4 - 17*t^3 - 17*t^2 - 17*t + 1). G.f.: (1+x)*(1-x^13)/(1 - 18*x + 170*x^13 - 153*x^14). - G. C. Greubel, Apr 26 2019 MATHEMATICA CoefficientList[Series[(1+x)*(1-x^13)/(1-18*x+170*x^13-153*x^14), {x, 0, 20}], x] (* G. C. Greubel, May 31 2016, modified Apr 26 2019 *) coxG[{13, 153, -17}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 26 2019 *) PROG (PARI) my(x='x+O('x^20)); Vec((1+x)*(1-x^13)/(1-18*x+170*x^13-153*x^14)) \\ G. C. Greubel, Apr 26 2019 (MAGMA) R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^13)/(1-18*x+170*x^13-153*x^14) )); // G. C. Greubel, Apr 26 2019 (Sage) ((1+x)*(1-x^13)/(1-18*x+170*x^13-153*x^14)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 26 2019 CROSSREFS Sequence in context: A165881 A166413 A166600 * A167126 A167676 A167929 Adjacent sequences:  A167046 A167047 A167048 * A167050 A167051 A167052 KEYWORD nonn AUTHOR John Cannon and N. J. A. Sloane, Dec 03 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 13 15:23 EDT 2021. Contains 342936 sequences. (Running on oeis4.)