login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A167034 Triangle t(n,m)= (m+1)^n*binomial(n,m) if m <= n/2, otherwise t(n,m) = t(n,n-m). 1
1, 1, 1, 1, 8, 1, 1, 24, 24, 1, 1, 64, 486, 64, 1, 1, 160, 2430, 2430, 160, 1, 1, 384, 10935, 81920, 10935, 384, 1, 1, 896, 45927, 573440, 573440, 45927, 896, 1, 1, 2048, 183708, 3670016, 27343750, 3670016, 183708, 2048, 1, 1, 4608, 708588, 22020096 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Row sums are 1, 2, 10, 50, 616, 5182, 104560, 1240528, 35055296, 537654086, 19596031984,...

This is obtained by taking the absolute value of the first half of each row of A075513 and defining the second half by mirror symmetry.

LINKS

Table of n, a(n) for n=0..48.

EXAMPLE

1;

1, 1;

1, 8, 1;

1, 24, 24, 1;

1, 64, 486, 64, 1;

1, 160, 2430, 2430, 160, 1;

1, 384, 10935, 81920, 10935, 384, 1;

1, 896, 45927, 573440, 573440, 45927, 896, 1;

1, 2048, 183708, 3670016, 27343750, 3670016, 183708, 2048, 1;

MAPLE

A167034 := proc(n, m)

    if m <= n/2 then

        (m+1)^n*binomial(n, m) ;

    else

        procname(n, n-m) ;

    end if;

end proc: # R. J. Mathar, Oct 13 2012

MATHEMATICA

T[m_, n_] = If[Floor[m/2] >= n, (n + 1)^m*Binomial[m, n], (m - n + 1)^m*Binomial[m, m - n]]

Flatten[Table[Table[T[m, n], {n, 0, m}], {m, 0, 10}]]

CROSSREFS

Sequence in context: A174303 A176488 A144436 * A155452 A147295 A174388

Adjacent sequences:  A167031 A167032 A167033 * A167035 A167036 A167037

KEYWORD

nonn,easy,tabl

AUTHOR

Roger L. Bagula and Mats Granvik, Oct 27 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 31 08:46 EDT 2020. Contains 338101 sequences. (Running on oeis4.)