login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A167022 Expansion of sqrt(1 - 2*x - 3*x^2) in powers of x. 2
1, -1, -2, -2, -4, -8, -18, -42, -102, -254, -646, -1670, -4376, -11596, -31022, -83670, -227268, -621144, -1706934, -4713558, -13072764, -36398568, -101704038, -285095118, -801526446, -2259520830, -6385455594, -18086805002, -51339636952, -146015545604 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Sequence is to Motzkin numbers as A002420 is to Catalan numbers.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

FORMULA

n*a(n) = (2*n - 3)*a(n-1) + (3*n - 9)*a(n-2) for n>1.

0 = a(n) * (9*a(n+1) + 15*a(n+2) - 12*a(n+3)) + a(n+1) * (-3*a(n+1) + 10*a(n+2) - 5*a(n+3)) + a(n+2) * (a(n+2) + a(n+3)) for all n in Z. - Michael Somos, Mar 23 2012

G.f.: sqrt(1 - 2*x - 3*x^2).

Convolution inverse of A002426. A007971(n) = -a(n) unless n=0. A126068(n) = -a(n) unless n=0 or n=1. A001006(n) = -a(n+2)/2 unless n=0 or n=1.

G.f.: A(x)=sqrt(1-2*a*x+((a)^2-4*b)*(x^2)) =1-a*x-2*b*x^2/G(0) ; G(k) = 1 - a*x - b*x^2/G(k+1). - Sergei N. Gladkovskii, Dec 05 2011

a=1;b=1;A(x)=(1-2*x-3*x^2)^(1/2)=1-x-2*x^2/G(0) ; G(k) = 1 - x - x^2/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 05 2011

G.f.: sqrt(1-2*x-3*(x^2))=1 - x/G(0) = (3*x+2)*G(0) - 1 ; G(k) = 1 - 2*x/(1 + x/(1 + x/(1 - 2*x/(1 - x/(2 - x/G(k+1)))))) ; (continued fraction). - Sergei N. Gladkovskii, Dec 11 2011

a(n) ~ -3^(n - 1/2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jun 05 2018

EXAMPLE

G.f. = 1 - x - 2*x^2 - 2*x^3 - 4*x^4 - 8*x^5 - 18*x^6 - 42*x^7 - 102*x^8 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ Sqrt[1 - 2 x - 3 x^2], {x, 0, n}] (* Michael Somos, Jan 25 2014 *)

PROG

(PARI) {a(n) = polcoeff( sqrt(1 - 2*x - 3*x^2 + x * O(x^n)), n)}

CROSSREFS

Cf. A001006, A002426, A007971, A126068.

Sequence in context: A007971 A126068 * A168055 A005702 A095335 A283117

Adjacent sequences:  A167019 A167020 A167021 * A167023 A167024 A167025

KEYWORD

sign

AUTHOR

Michael Somos, Oct 27 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 05:44 EDT 2018. Contains 316259 sequences. (Running on oeis4.)