login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A167009 a(n) = Sum_{k=0..n} C(n^2, n*k). 12
1, 2, 8, 170, 16512, 6643782, 11582386286, 79450506979090, 2334899414608412672, 265166261617029717011822, 128442558588779813655233443038, 238431997806538515396060130910954852 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..58

V. Kotesovec, Interesting asymptotic formulas for binomial sums, Jun 09 2013

FORMULA

Ignoring initial term, equals the logarithmic derivative of A167006. [From Paul D. Hanna, Nov 18 2009]

If n is even then a(n) ~ c * 2^(n^2 + 1/2)/(n*sqrt(Pi)), where c = Sum_{k = -infinity..infinity} exp(-2*k^2) = 1.271341522189... (see A218792). - Vaclav Kotesovec, Nov 05 2012

If n is odd then c = Sum_{k = -infinity..infinity} exp(-2*(k+1/2)^2) = 1.23528676585389... - Vaclav Kotesovec, Nov 06 2012

EXAMPLE

The triangle A209330 of coefficients C(n^2, n*k), n>=k>=0, begins:

1;

1, 1;

1, 6, 1;

1, 84, 84, 1;

1, 1820, 12870, 1820, 1;

1, 53130, 3268760, 3268760, 53130, 1;

1, 1947792, 1251677700, 9075135300, 1251677700, 1947792, 1; ...

in which the row sums form this sequence.

MATHEMATICA

Table[Sum[Binomial[n^2, n*k], {k, 0, n}], {n, 0, 15}] (* Harvey P. Dale, Dec 11 2011 *)

PROG

(PARI) a(n)=sum(k=0, n, binomial(n^2, n*k))

CROSSREFS

Cf. A014062, A167010.

Cf. A167006, A209330.

Cf. A218792.

Sequence in context: A009606 A009682 A076548 * A105232 A009713 A265597

Adjacent sequences:  A167006 A167007 A167008 * A167010 A167011 A167012

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Nov 17 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 14 01:24 EST 2019. Contains 329108 sequences. (Running on oeis4.)