OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..500
FORMULA
Self-convolution yields A166992.
a(n) ~ c * 16^n / n^(5/2), where c = 0.14011467789446087641913961305130549385534145578464604013551918158... - Vaclav Kotesovec, Nov 27 2017
EXAMPLE
G.f.: A(x) = 1 + x + 5*x^2 + 32*x^3 + 266*x^4 + 2499*x^5 + 25765*x^6 +...
log(A(x)) = x + 9*x^2/2 + 82*x^3/3 + 905*x^4/4 + 10626*x^5/5 + 131922*x^6/6 + 1697508*x^7/7 +...+ A005260(n)/2*x^n/n +...
MATHEMATICA
a[n_] := Sum[(Binomial[n, k])^4, {k, 0, n}]; f[x_] := Sum[a[n]*x^n/(2*n), {n, 1, 75}]; CoefficientList[Series[Exp[f[x]], {x, 0, 50}], x] (* G. C. Greubel, May 30 2016 *)
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m, k)^4)/2*x^m/m)+x*O(x^n)), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 17 2009
STATUS
approved