login
A166976
Array of A002450 in the top row and higher-order differences in subsequent rows, read by antidiagonals.
1
0, 1, 1, 3, 4, 5, 9, 12, 16, 21, 27, 36, 48, 64, 85, 81, 108, 144, 192, 256, 341, 243, 324, 432, 576, 768, 1024, 1365, 729, 972, 1296, 1728, 2304, 3072, 4096, 5461, 2187, 2916, 3888, 5184, 6912, 9216, 12288, 16384, 21845, 6561
OFFSET
0,4
FORMULA
T(0,k) = A002450(k). T(n,k) = T(n-1,k+1) - T(n-1,k), n > 0.
EXAMPLE
The array starts:
0, 1, 5, 21, 85, 341,1365,5461,21845,87381,349525, A002450
1, 4, 16, 64, 256,1024,4096,16384,65536,262144,1048576, A000302
3, 12, 48, 192, 768,3072,12288,49152,196608,786432, A002001, A164346, A110594
9, 36, 144, 576,2304,9216,36864,147456 A002063, A055841
MAPLE
A002450 := proc(n) (4^n-1)/3 ; end proc:
A166976 := proc(n, k) option remember; if n = 0 then A002450(k) else procname(n-1, k+1)-procname(n-1, k) ; end if; end proc: # R. J. Mathar, Jul 02 2011
CROSSREFS
Sequence in context: A028952 A361997 A108018 * A240056 A235396 A338256
KEYWORD
nonn,easy,tabl
AUTHOR
Paul Curtz, Oct 26 2009
STATUS
approved