login
A166959
Numbers congruent to (12,32) mod 44.
1
12, 32, 56, 76, 100, 120, 144, 164, 188, 208, 232, 252, 276, 296, 320, 340, 364, 384, 408, 428, 452, 472, 496, 516, 540, 560, 584, 604, 628, 648, 672, 692, 716, 736, 760, 780, 804, 824, 848, 868, 892, 912, 936, 956, 980, 1000, 1024, 1044, 1068
OFFSET
1,1
COMMENTS
Twelfth row of 22-rowed array.
FORMULA
Except for the initial term, a(n) = 44*(n-1) - a(n-1).
From R. J. Mathar, Jan 30 2010: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3).
a(n) = 22*n - (-1)^n - 11.
G.f.: 4*x*(3 + 5*x + 3*x^2)/((1+x)*(x-1)^2). (End)
E.g.f.: 11*(2*x - 1)*exp(x) - exp(-x) + 12. - G. C. Greubel, May 29 2016
MATHEMATICA
LinearRecurrence[{1, 1, -1}, {12, 32, 56}, 50] (* G. C. Greubel, May 29 2016 *)
Select[Range[1200], MemberQ[{12, 32}, Mod[#, 44]]&] (* Harvey P. Dale, Oct 14 2022 *)
PROG
(Magma) [ n : n in [1..1650] | n mod 44 in [12, 32] ]; // Vincenzo Librandi, Apr 21 2011
CROSSREFS
Sequence in context: A248817 A051519 A305074 * A134582 A177721 A081268
KEYWORD
easy,nonn
AUTHOR
Giovanni Teofilatto, Oct 25 2009
EXTENSIONS
First formula corrected by R. J. Mathar, Jan 30 2010
Last few terms corrected by Vincenzo Librandi, Apr 21 2011
STATUS
approved